scholarly journals Temporal expression patterns of fruit-specific α- EXPANSINS during cell expansion in bell pepper (Capsicum annuum L.)

2020 ◽  
Author(s):  
Savithri Nambeesan ◽  
Andrés Mayorga-Gómez

Abstract BackgroundExpansins (EXP) facilitate non-enzymatic cell wall loosening during several phases of plant growth and development including fruit growth, internode expansion, pollen tube growth, leaf and root development, and during abiotic stress responses. In this study, we characterized the spatial and temporal expression pattern of C. annuum α- EXPANSINS (CaEXPA) genes. Additionally, we correlated fruit-specific CaEXPA expression with the rate of cell expansion during bell pepper fruit development. ResultsSpatial expression patterns revealed that CaEXPA13 was up-regulated in vegetative tissues and flowers, with the most abundant expression in mature leaves. Expression of CaEXPA4 was associated with stems and roots. CaEXPA3 was expressed abundantly in flower at anthesis suggesting a role for CaEXPA3 in flower development. Temporal expression analysis revealed that 9 out of the 21 genes were highly expressed during fruit development. Of these, expression of six genes, CaEXPA5, CaEXPA7, CaEXPA12, CaEXPA14 CaEXPA17 and CaEXPA19 were abundant 7 to 21 days after anthesis (DAA), whereas CaEXP6 was strongly expressed between 14 and 28 DAA. Further, this study revealed that fruit growth and cell expansion occur throughout bell pepper development until ripening, with highest rates of fruit growth and cell expansion occurring between 7 and 14 DAA. The expression of CaEXPA14 and CaEXPA19 positively correlated with the rate of cell expansion, suggesting their role in post-mitotic cell expansion-mediated growth of the bell pepper fruit. In this study, we also identified high transcript abundance of CaEXPA9 during ripening.ConclusionThis is the first genome-wide study of CaEXPA expression during fruit growth and development. We identified a fruit-specific EXPA that may be important in facilitating cell expansion during growth and cell wall loosening during ripening in bell pepper. These EXPA genes could be important targets for future manipulation of fruit size and ripening characteristics.

2020 ◽  
Author(s):  
Andrés Mayorga-Gómez ◽  
Savithri Nambeesan

Abstract Background Expansins (EXP) facilitate non-enzymatic cell wall loosening during several phases of plant growth and development including fruit growth, internode expansion, pollen tube growth, leaf and root development, and during abiotic stress responses. In this study, the spatial and temporal expression patterns of C. annuum α- EXPANSINS (CaEXPA) genes were characterized. Additionally, fruit-specific CaEXPA expression was correlated with the rate of cell expansion during bell pepper fruit development. Results Spatial expression patterns revealed that CaEXPA13 was up-regulated in vegetative tissues and flowers, with the most abundant expression in mature leaves. Expression of CaEXPA4 was associated with stems and roots. CaEXPA3 was expressed abundantly in flower at anthesis suggesting a role for CaEXPA3 in flower development. Temporal expression analysis revealed that 9 out of the 21 genes were highly expressed during fruit development. Of these, expression of six genes, CaEXPA5, CaEXPA7, CaEXPA12, CaEXPA14 CaEXPA17 and CaEXPA19 were abundant 7 to 21 days after anthesis (DAA), whereas CaEXP6 was strongly expressed between 14 and 28 DAA. Further, this study revealed that fruit growth and cell expansion occur throughout bell pepper development until ripening, with highest rates of fruit growth and cell expansion occurring between 7 and 14 DAA. The expression of CaEXPA14 and CaEXPA19 positively correlated with the rate of cell expansion, suggesting their role in post-mitotic cell expansion-mediated growth of the bell pepper fruit. In this study, a ripening specific EXP transcript, CaEXPA9 was identified, suggesting its role in cell wall disassembly during ripening.Conclusion This is the first genome-wide study of CaEXPA expression during fruit growth and development. Identification of a fruit-specific EXPAs suggest their importance in facilitating cell expansion during growth and cell wall loosening during ripening in bell pepper. These EXPA genes could be important targets for future manipulation of fruit size and ripening characteristics.


Genetika ◽  
2019 ◽  
Vol 51 (1) ◽  
pp. 261-274 ◽  
Author(s):  
Dong Zhu ◽  
Yanlin Liu ◽  
Man Jin ◽  
Guanxing Chen ◽  
Slaven Prodanovic ◽  
...  

Expansins are a group of plant cell wall loosening proteins that play important roles in plant growth and development. In this study, we performed the first study on the molecular characterization, transcriptional expression and functional properties of two wheat expansin genes TaEXPA2 and TaEXPB1. The results indicated that TaEXPA2 and TaEXPB1 genes had typical structural features of plant expansin gene family. As a member of ?-expansins, TaEXPA2 is closely related to rice OsEXPA17 while the ?- expansin member TaEXPB1 has closely phylogenetic relationships with rice OsEXPAB4. The genetic transformation to Arabidopsis showed that both TaEXPA2 and TaEXPB1 were located in cell wall and highly expressed in roots, leaves and seeds. Overexpression of TaEXPA2 and TaEXPB1 genes showed similar functions, causing rapid root elongation, early bolting, and increases in leaves number, rosette diameter and stems length. These results demonstrated that wheat expansin genes TaEXPA1 and TaEXPB2 can enhance plant growth and development.


2020 ◽  
Vol 21 (24) ◽  
pp. 9491
Author(s):  
Kang-Ming Jin ◽  
Ren-Ying Zhuo ◽  
Dong Xu ◽  
Yu-Jun Wang ◽  
Hui-Jin Fan ◽  
...  

Expansins, a group of cell wall-loosening proteins, are involved in cell-wall loosening and cell enlargement in a pH-dependent manner. According to previous study, they were involved in plant growth and abiotic stress responses. However, information on the biological function of the expansin gene in moso bamboo is still limited. In this study, we identified a total of 82 expansin genes in moso bamboo, clustered into four subfamilies (α-expansin (EXPA), β-expansin (EXPB), expansin-like A (EXLA) and expansin-like B (EXPB)). Subsequently, the molecular structure, chromosomal location and phylogenetic relationship of the expansin genes of Phyllostachys edulis (PeEXs) were further characterized. A total of 14 pairs of tandem duplication genes and 31 pairs of segmented duplication genes were also identified, which may promote the expansion of the expansin gene family. Promoter analysis found many cis-acting elements related to growth and development and stress response, especially abscisic acid response element (ABRE). Expression pattern revealed that most PeEXs have tissue expression specificity. Meanwhile, the expression of some selected PeEXs was significantly upregulated mostly under abscisic acid (ABA) and polyethylene glycol (PEG) treatment, which implied that these genes actively respond to expression under abiotic stress. This study provided new insights into the structure, evolution and function prediction of the expansin gene family in moso bamboo.


1991 ◽  
Vol 96 (2) ◽  
pp. 551-557 ◽  
Author(s):  
Takayuki Hoson ◽  
Yoshio Masuda ◽  
Yoshiaki Sone ◽  
Akira Misaki

Sign in / Sign up

Export Citation Format

Share Document