scholarly journals Expression and function analysis of wheat expasin genes EXPA2 and EXPB1

Genetika ◽  
2019 ◽  
Vol 51 (1) ◽  
pp. 261-274 ◽  
Author(s):  
Dong Zhu ◽  
Yanlin Liu ◽  
Man Jin ◽  
Guanxing Chen ◽  
Slaven Prodanovic ◽  
...  

Expansins are a group of plant cell wall loosening proteins that play important roles in plant growth and development. In this study, we performed the first study on the molecular characterization, transcriptional expression and functional properties of two wheat expansin genes TaEXPA2 and TaEXPB1. The results indicated that TaEXPA2 and TaEXPB1 genes had typical structural features of plant expansin gene family. As a member of ?-expansins, TaEXPA2 is closely related to rice OsEXPA17 while the ?- expansin member TaEXPB1 has closely phylogenetic relationships with rice OsEXPAB4. The genetic transformation to Arabidopsis showed that both TaEXPA2 and TaEXPB1 were located in cell wall and highly expressed in roots, leaves and seeds. Overexpression of TaEXPA2 and TaEXPB1 genes showed similar functions, causing rapid root elongation, early bolting, and increases in leaves number, rosette diameter and stems length. These results demonstrated that wheat expansin genes TaEXPA1 and TaEXPB2 can enhance plant growth and development.

Author(s):  
Rekha Agrawal ◽  
Fajkus Jiří ◽  
Jitendra K Thakur

Abstract Mediator, a multisubunit protein complex, is a signal processor that conveys regulatory information from transcription factors to RNA polymerase II and therefore plays an important role in the regulation of gene expression. This megadalton complex comprises four modules, namely, the head, middle, tail, and kinase modules. The first three modules form the core part of the complex, whereas association of the kinase module is facultative. The kinase module is able to alter the function of Mediator and has been established as a major transcriptional regulator of numerous developmental and biochemical processes. The kinase module consists of MED12, MED13, CycC, and kinase CDK8. Upon association with Mediator, the kinase module can alter its structure and function dramatically. In the past decade, research has established that the kinase module is very important for plant growth and development, and in the fight against biotic and abiotic challenges. However, there has been no comprehensive review discussing these findings in detail and depth. In this review, we survey the regulation of kinase module subunits and highlight their many functions in plants. Coordination between the subunits to process different signals for optimum plant growth and development is also discussed.


2020 ◽  
Author(s):  
Andrés Mayorga-Gómez ◽  
Savithri Nambeesan

Abstract Background Expansins (EXP) facilitate non-enzymatic cell wall loosening during several phases of plant growth and development including fruit growth, internode expansion, pollen tube growth, leaf and root development, and during abiotic stress responses. In this study, the spatial and temporal expression patterns of C. annuum α- EXPANSINS (CaEXPA) genes were characterized. Additionally, fruit-specific CaEXPA expression was correlated with the rate of cell expansion during bell pepper fruit development. Results Spatial expression patterns revealed that CaEXPA13 was up-regulated in vegetative tissues and flowers, with the most abundant expression in mature leaves. Expression of CaEXPA4 was associated with stems and roots. CaEXPA3 was expressed abundantly in flower at anthesis suggesting a role for CaEXPA3 in flower development. Temporal expression analysis revealed that 9 out of the 21 genes were highly expressed during fruit development. Of these, expression of six genes, CaEXPA5, CaEXPA7, CaEXPA12, CaEXPA14 CaEXPA17 and CaEXPA19 were abundant 7 to 21 days after anthesis (DAA), whereas CaEXP6 was strongly expressed between 14 and 28 DAA. Further, this study revealed that fruit growth and cell expansion occur throughout bell pepper development until ripening, with highest rates of fruit growth and cell expansion occurring between 7 and 14 DAA. The expression of CaEXPA14 and CaEXPA19 positively correlated with the rate of cell expansion, suggesting their role in post-mitotic cell expansion-mediated growth of the bell pepper fruit. In this study, a ripening specific EXP transcript, CaEXPA9 was identified, suggesting its role in cell wall disassembly during ripening.Conclusion This is the first genome-wide study of CaEXPA expression during fruit growth and development. Identification of a fruit-specific EXPAs suggest their importance in facilitating cell expansion during growth and cell wall loosening during ripening in bell pepper. These EXPA genes could be important targets for future manipulation of fruit size and ripening characteristics.


2020 ◽  
Author(s):  
Savithri Nambeesan ◽  
Andrés Mayorga-Gómez

Abstract BackgroundExpansins (EXP) facilitate non-enzymatic cell wall loosening during several phases of plant growth and development including fruit growth, internode expansion, pollen tube growth, leaf and root development, and during abiotic stress responses. In this study, we characterized the spatial and temporal expression pattern of C. annuum α- EXPANSINS (CaEXPA) genes. Additionally, we correlated fruit-specific CaEXPA expression with the rate of cell expansion during bell pepper fruit development. ResultsSpatial expression patterns revealed that CaEXPA13 was up-regulated in vegetative tissues and flowers, with the most abundant expression in mature leaves. Expression of CaEXPA4 was associated with stems and roots. CaEXPA3 was expressed abundantly in flower at anthesis suggesting a role for CaEXPA3 in flower development. Temporal expression analysis revealed that 9 out of the 21 genes were highly expressed during fruit development. Of these, expression of six genes, CaEXPA5, CaEXPA7, CaEXPA12, CaEXPA14 CaEXPA17 and CaEXPA19 were abundant 7 to 21 days after anthesis (DAA), whereas CaEXP6 was strongly expressed between 14 and 28 DAA. Further, this study revealed that fruit growth and cell expansion occur throughout bell pepper development until ripening, with highest rates of fruit growth and cell expansion occurring between 7 and 14 DAA. The expression of CaEXPA14 and CaEXPA19 positively correlated with the rate of cell expansion, suggesting their role in post-mitotic cell expansion-mediated growth of the bell pepper fruit. In this study, we also identified high transcript abundance of CaEXPA9 during ripening.ConclusionThis is the first genome-wide study of CaEXPA expression during fruit growth and development. We identified a fruit-specific EXPA that may be important in facilitating cell expansion during growth and cell wall loosening during ripening in bell pepper. These EXPA genes could be important targets for future manipulation of fruit size and ripening characteristics.


1978 ◽  
Vol 200 (1140) ◽  
pp. 231-243 ◽  

The hormones known to be responsible for control of many aspects of plant growth and development are first briefly described. The effects of infection of plants by certain biotrophic parasites on hormone metabolism and function are then discussed, together with the associated developmental abnormalities. It is seen that though disease frequently does cause considerable changes in hormone levels, the reasons for these changes have only in very few cases been determined. Attention is drawn to the fact that toxins produced by biotrophic parasites may have hormone-like effects, though structurally unrelated to any known endogenous plant hormone.


2020 ◽  
Vol 126 (5) ◽  
pp. 807-824
Author(s):  
Liu Wang ◽  
Bret E Hart ◽  
Ghazanfar Abbas Khan ◽  
Edward R Cruz ◽  
Staffan Persson ◽  
...  

Abstract Background Phytohormones are small molecules that regulate virtually every aspect of plant growth and development, from basic cellular processes, such as cell expansion and division, to whole plant environmental responses. While the phytohormone levels and distribution thus tell the plant how to adjust itself, the corresponding growth alterations are actuated by cell wall modification/synthesis and internal turgor. Plant cell walls are complex polysaccharide-rich extracellular matrixes that surround all plant cells. Among the cell wall components, cellulose is typically the major polysaccharide, and is the load-bearing structure of the walls. Hence, the cell wall distribution of cellulose, which is synthesized by large Cellulose Synthase protein complexes at the cell surface, directs plant growth. Scope Here, we review the relationships between key phytohormone classes and cellulose deposition in plant systems. We present the core signalling pathways associated with each phytohormone and discuss the current understanding of how these signalling pathways impact cellulose biosynthesis with a particular focus on transcriptional and post-translational regulation. Because cortical microtubules underlying the plasma membrane significantly impact the trajectories of Cellulose Synthase Complexes, we also discuss the current understanding of how phytohormone signalling impacts the cortical microtubule array. Conclusion Given the importance of cellulose deposition and phytohormone signalling in plant growth and development, one would expect that there is substantial cross-talk between these processes; however, mechanisms for many of these relationships remain unclear and should be considered as the target of future studies.


2008 ◽  
Vol 35 (12) ◽  
pp. 1183 ◽  
Author(s):  
Barry S. Flinn

The plant extracellular matrix (ECM) includes a variety of proteins with critical roles in the regulation of plant growth, development, and responses to pests and pathogens. Several studies have shown that various ECM proteins undergo proteolytic modification. In mammals, the extracellular matrix metalloproteinases (MMPs) are known modifiers of the ECM, implicated in tissue architecture changes and the release of biologically active and/or signalling molecules. Although plant MMPs have been identified, little is known about their activity and function. Plant MMPs show structural similarity to mammalian MMPs, including the presence of an auto-regulatory cysteine switch domain and a zinc-binding catalytic domain. Plant MMPs are differentially expressed in cells and tissues during plant growth and development, as well as in response to several biotic and abiotic stresses. The few gene expression and mutant analyses to date indicate their involvement in plant growth, morphogenesis, senescence and adaptation and response to stress. In order to gain a further understanding of their function, an analysis and characterisation of MMP proteins, their activity and their substrates during plant growth and development are still required. This review describes plant MMP work to date, as well as the variety of genomic and proteomic methodologies available to characterise plant MMP activity, function and potential substrates.


Sign in / Sign up

Export Citation Format

Share Document