scholarly journals Prognostic Nomogram Based on Circular RNA-Associated Competing Endogenous RNA Network For Patients With Lung Adenocarcinoma

Author(s):  
Yang Li ◽  
Rongrong Sun ◽  
Rui Li ◽  
Yonggang Chen ◽  
He Du

Abstract Evidence is increasingly indicating that circular RNAs (circRNAs) are closely involved in tumorigenesis and cancer progression. However, function and application of circRNAs in lung adenocarcinoma (LUAD) are still unknown. In this study, we selected differentially expressed circRNAs (DEcircRNAs), differentially expressed miRNAs (DEmiRNAs) and differentially expressed mRNAs (DEmRNAs) to establish a circRNA-associated competitive endogenous RNA (ceRNA) network and further constructed a prognostic signature for LUAD patients. Based on TargetScan prediction tool and Pearson correlation coefficient, we constructed a circRNA-associated ceRNA network including 11 DEcircRNAs, 8 DEmiRNAs and 49 DEmRNAs. Functional enrichment indicated that the ceRNA network might be involved in regulation of GTPase activity and endothelial cell differentiation. After removing the discrete points, a protein-protein interaction (PPI) network containing 12 DEmRNAs was constructed. Based on DEmRNAs within PPI network, we constructed a three-gene prognostic signature for LUAD patients using LASSO method. Patients in the training cohort could be categorized into high-risk or low-risk subgroup with significant survival difference (HR: 1.62, 95% CI: 1.12-2.35, log-rank p = 0.009). The prognostic performance was confirmed in an independent cohort (HR: 2.59, 95% CI: 1.32-5.10, log-rank p = 0.004). Combining three-gene signature with clinical risk characters, a nomogram was constructed. The calibration curves for probability of 3- and 5-year overall survival showed significant agreement between nomogram predictions and actual observations. Our findings provided a deeper understanding of the circRNA-associated ceRNA regulatory mechanism in LUAD pathogenesis and constructed a prognostic signature that could be a useful guide for personalized treatment of LUAD patients.

2021 ◽  
Author(s):  
Pejman Morovat ◽  
Saman Morovat ◽  
Arash M. Ashrafi ◽  
Shahram Teimourian

Abstract Hepatocellular carcinoma (HCC) is one of the most prevalent cancers worldwide, which has a high mortality rate and poor treatment outcomes with yet unknown molecular basis. It seems that gene expression plays a pivotal role in the pathogenesis of the disease. Circular RNAs (circRNAs) can interact with microRNAs (miRNAs) to regulate gene expression in various malignancies by acting as competitive endogenous RNAs (ceRNAs). However, the potential pathogenesis roles of the ceRNA network among circRNA/miRNA/mRNA in HCC are unclear. In this study, first, the HCC circRNA expression data were obtained from three Gene Expression Omnibus microarray datasets (GSE164803, GSE94508, GSE97332), and the differentially expressed circRNAs (DECs) were identified using R limma package. Also, the liver hepatocellular carcinoma (LIHC) miRNA and mRNA sequence data were retrieved from TCGA, and differentially expressed miRNAs (DEMIs) and mRNAs (DEGs) were determined using the R DESeq2 package. Second, CSCD website was used to uncover the binding sites of miRNAs on DECs. The DECs' potential target miRNAs were revealed by conducting an intersection between predicted miRNAs from CSCD and downregulated DEMIs. Third, some related genes were uncovered by intersecting targeted genes predicted by miRWalk and targetscan online tools with upregulated DEGs. The ceRNA network was then built using the Cytoscape software. The functional enrichment and the overall survival time of these potential targeted genes were analyzed, and a PPI network was constructed in the STRING database. Network visualization was performed by Cytoscape, and ten hub genes were detected using the CytoHubba plugin tool. Four DECs (hsa_circ_0000520, hsa_circ_0008616, hsa_circ_0070934, hsa_circ_0004315) were obtained and six miRNAs (hsa-miR-542-5p, hsa-miR-326, hsa-miR-511-5p, hsa-miR-195-5p, hsa-miR-214-3p, and hsa-miR-424-5p) which are regulated by the above DECs were identified. Then 543 overlapped genes regulated by six miRNAs mentioned above were predicted. Functional enrichment analysis showed that these genes are mostly associated with cancer regulation functions. Ten hub genes (TTK،AURKB, KIF20A، KIF23، CEP55، CDC6، DTL، NCAPG، CENPF، PLK4) have been screened from the PPI network of the 204 survival-related genes. KIF20A, NCAPG, TTK, PLK4, and CDC6 were selected for the highest significant p-values. In the end, a circRNA-miRNA-mRNA regulatory axis was established for five final selected hub genes. This study implies the potential pathogenesis of the obtained network and proposes that the two DECs (has_circ_0070934 and has_circ_0004315) may be important prognostic factor for HCC.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Yang Li ◽  
Rongrong Sun ◽  
Rui Li ◽  
Yonggang Chen ◽  
He Du

Evidence is increasingly indicating that circular RNAs (circRNAs) are closely involved in tumorigenesis and cancer progression. However, the function and application of circRNAs in lung adenocarcinoma (LUAD) are still unknown. In this study, we constructed a circRNA-associated competitive endogenous RNA (ceRNA) network to investigate the regulatory mechanism of LUAD procession and further constructed a prognostic signature to predict overall survival for LUAD patients. Differentially expressed circRNAs (DEcircRNAs), differentially expressed miRNAs (DEmiRNAs), and differentially expressed mRNAs (DEmRNAs) were selected to construct the ceRNA network. Based on the TargetScan prediction tool and Pearson correlation coefficient, we constructed a circRNA-associated ceRNA network including 11 DEcircRNAs, 8 DEmiRNAs, and 49 DEmRNAs. GO and KEGG enrichment indicated that the ceRNA network might be involved in the regulation of GTPase activity and endothelial cell differentiation. After removing the discrete points, a PPI network containing 12 DEmRNAs was constructed. Univariate Cox regression analysis showed that three DEmRNAs were significantly associated with overall survival. Therefore, we constructed a three-gene prognostic signature for LUAD patients using the LASSO method in the TCGA-LUAD training cohort. By applying the signature, patients could be categorized into the high-risk or low-risk subgroups with significant survival differences (HR: 1.62, 95% CI: 1.12-2.35, log-rank p = 0.009 ). The prognostic performance was confirmed in an independent GEO cohort (GSE42127, HR: 2.59, 95% CI: 1.32-5.10, log-rank p = 0.004 ). Multivariate Cox regression analysis proved that the three-gene signature was an independent prognostic factor. Combining the three-gene signature with clinical characters, a nomogram was constructed. The primary and external verification C -indexes were 0.717 and 0.716, respectively. The calibration curves for the probability of 3- and 5-year OS showed significant agreement between nomogram predictions and actual observations. Our findings provided a deeper understanding of the circRNA-associated ceRNA regulatory mechanism in LUAD pathogenesis and further constructed a useful prognostic signature to guide personalized treatment of LUAD patients.


2020 ◽  
Author(s):  
Dan Yang ◽  
Yang He ◽  
Bo Wu ◽  
Yan Deng ◽  
Ruxi Liu ◽  
...  

Abstract Background: Lung adenocarcinoma (LUAD) is the most common histological subtype of lung cancer worldwide. Until now, the molecular mechanisms underlying LUAD progression have not been fully explained. This study aimed to identify a competing endogenous RNA (ceRNA) network in LUAD.Methods: Differentially expressed lncRNAs (DELs), miRNAs (DEMs), and mRNAs (DEGs) were identified from The Cancer Genome Atlas (TCGA) database with a |log2FC| > 1.0 and a false discovery rate (FDR) < 0.05. Then, these DELs, DEMs, and DEGs were used to construct the initial ceRNA network. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), protein-protein interaction (PPI) network, and survival analyses were performed to analyse these DEGs involved in the ceRNA network. Subsequently, the drug-gene interaction database (DGIdb) was utilized to select candidate LUAD drugs interacting with significant DEGs. Then, lasso-penalized Cox regression and multivariate Cox regression models were used to construct the risk score system. Kaplan-Meier (K-M) survival curves and receiver operating characteristic (ROC) curves were utilized to validate the reliability of the risk score system. Finally, based on the correlations between DELs and DEGs involved in the risk score system, the final ceRNA network was identified. Meanwhile, the GEPIA2 database and immunohistochemical (IHC) results were utilized to validate the expression levels of selected DEGs. GEPIA2 was further used to verify the correlations between DEGs and DELs.Results: A total of 340 DELs, 29 DEMs, and 218 DEGs were selected to construct the initial ceRNA network. Functional enrichment analyses indicated that 218 DEGs were significantly enriched in the GO terms “nucleoplasm”, “transcription factor complex”, “protein binding”, and “metal ion binding”, whereas these DEGs were associated with the KEGG pathway terms “microRNAs in cancer”, “pathways in cancer”, “cell cycle”, “HTLV-1 infection”, and the “PI3K-Akt signalling pathway”. K-M survival analysis of all differentially expressed genes involved in the ceRNA network identified 24 DELs, 4 DEMs, and 29 DEGs, all of which were significantly correlated with LUAD progression (P < 0.05). Furthermore, 15 LUAD drugs interacting with 29 DEGs were selected. After lasso-penalized Cox regression and multivariate Cox regression modelling, 4 DEGs, PRKCE, DLC1, LATS2, and DPY19L1, were incorporated into the risk score system. The area under the curve (AUC) values of the time-dependent ROC curves at 3 years and 5 years were both higher than 0.5. Finally, the correlation coefficients between these 4 DEGs and their corresponding DELs involved in the ceRNA network suggested that there were 2 DEL-DEG pairs, NAV2-AS2 – PRKCE (r = 0.430, P < 0.001) and NAV2-AS2 – LATS2 (r = 0.338, P < 0.001). Considering the previously constructed ceRNA network, NAV2-AS2 – mir-31 – PRKCE and NAV2-SA2 – mir-31 – LATS2 were identified.Conclusions: The lncRNA-miRNA-mRNA ceRNA network plays an essential role in LUAD. These results may improve our understanding and provide novel mechanistic insights to explore diagnostics, tumourigenesis, prognosis, and therapeutic drugs for LUAD patients.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Donghui Jin ◽  
Yuxuan Song ◽  
Yuan Chen ◽  
Peng Zhang

Background. Lung cancer is the most common cancer and the most common cause of cancer-related death worldwide. However, the molecular mechanism of its development is unclear. It is imperative to identify more novel biomarkers. Methods. Two datasets (GSE70880 and GSE113852) were downloaded from the Gene Expression Omnibus (GEO) database and used to identify the differentially expressed genes (DEGs) between lung cancer tissues and normal tissues. Then, we constructed a competing endogenous RNA (ceRNA) network and a protein-protein interaction (PPI) network and performed gene ontology (GO) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, and survival analyses to identify potential biomarkers that are related to the diagnosis and prognosis of lung cancer. Results. A total of 41 lncRNAs and 805 mRNAs were differentially expressed in lung cancer. The ceRNA network contained four lncRNAs (CLDN10-AS1, SFTA1P, SRGAP3-AS2, and ADAMTS9-AS2), 21 miRNAs, and 48 mRNAs. Functional analyses revealed that the genes in the ceRNA network were mainly enriched in cell migration, transmembrane receptor, and protein kinase activity. mRNAs DLGAP5, E2F7, MCM7, RACGAP1, and RRM2 had the highest connectivity in the PPI network. Immunohistochemistry (IHC) demonstrated that mRNAs DLGAP5, MCM7, RACGAP1, and RRM2 were upregulated in lung adenocarcinoma (LUAD). Survival analyses showed that lncRNAs CLDN10-AS1, SFTA1P, and ADAMTS9-AS2 were associated with the prognosis of LUAD. Conclusion. lncRNAs CLDN10-AS1, SFTA1P, and ADAMTS9-AS2 might be the biomarkers of LUAD. For the first time, we confirmed the important role of lncRNA CLDN10-AS1 in LUAD.


2020 ◽  
Author(s):  
Xuelong Wang ◽  
Bin Zhou ◽  
Yuxin Xia ◽  
Jianxin Zuo ◽  
Yanchao Liu ◽  
...  

Abstract Background: Evidence is increasingly indicating that circular RNAs (circRNAs) are closely involved in tumorigenesis and cancer progression. However, functions of circRNAs in lung adenocarcinoma (LUAD) are still unknown. It is necessary to investigate the regulatory mechanism of circRNAs based on competing endogenous RNA (ceRNA) network in LUAD procession and further construct a prognostic signature for predicting overall survival of LUAD patients.Methods: Differentially expressed circRNAs (DEcircRNAs), differentially expressed miRNAs (DEmiRNAs) and differentially expressed mRNAs (DEmRNAs) were selected to construct the ceRNA network based on TargetScan prediction tool and Pearson correlation coefficient. Functional and pathway enrichment analysis were performed using DAVID database. A PPI network was constructed and then visualized by Cytoscape software. Finally, we constructed a prognostic signature for LUAD patients using LASSO method and assessed the prognostic performance in the validation cohort.Results: A total of 38 DEcircRNAs, 56 DEmiRNAs, and 960 DEmRNAs were identifed. Based on the interactions predicted by TargetScan, we constructed a circRNA-associated ceRNA network including 11 DEcircRNAs, 8 DEmiRNAs and 49 DEmRNAs. GO and KEGG pathway analysis indicated that the circRNA-associated ceRNA network might be involved in regulation of GTPase activity and endothelial cell differentiation. After removing the discrete points, a PPI network containing 12 DEmRNAs was constructed. Univariate cox regression analysis showed that three DEmRNAs were significantly associated with overall survival. Therefore, we constructed a three-gene prognostic signature for LUAD patients using LASSO method. By applying the signature, patients in the training cohort could be categorized into high-risk or low-risk subgroup with significant survival difference (HR: 1.62, 95% CI: 1.12-2.35, log-rank p = 0.009). The prognostic performance was confirmed in an independent GEO cohort (HR: 2.59, 95% CI: 1.32-5.10, log-rank p = 0.004). Multivariate cox regression analysis proved that the three-gene signature was an independent prognostic factor for LUAD.Conclusions: Our findings provided a deeper understanding of the circRNA-associated ceRNA regulatory mechanism in LUAD pathogenesis and constructed a prognostic signature that could be a useful guide for personalized treatment of LUAD patients.


2020 ◽  
Author(s):  
Zhaojun Wang ◽  
Haifeng Li ◽  
Li Wei ◽  
Junhang Zhang

Abstract Background: Circular RNAs (circRNAs), a new class of regulatory noncoding RNAs, are involved in gene regulation and may play a role in cancer development. This study aimed to identify circRNAs involved in lung adenocarcinoma (LUAD) using bioinformatics analysis.Methods: CircRNA (GSE101684, GSE101586), miRNA (GSE135918), and mRNA (GSE130779) microarray datasets were downloaded from the Gene Expression Omnibus (GEO) database to identify differentially expressed circRNAs (DECs), miRNAs (DEMs), and mRNAs (DEGs) in LUAD. Circinteractome and StarBase were used to predict miRNAs and mRNAs, respectively. A circRNA-miRNA-mRNA-ceRNA network was constructed. Patient survival was analyzed using UALCAN, and a sub-network was established.Results: Hsa_circ_0072088 was identified as a differentially expressed (upregulated) circRNA in the two datasets. Intersection analysis identified hsa-miR-532-3p and hsa-miR-942 as the two miRNAs with the highest potential for binding to hsa_circ_0072088. Differential expression analysis and target gene prediction were performed to build a ceRNA network of hsa_circ_0072088 using Circinteractome/StarBase 3.0. Intersection analysis showed that TMEM52, IL24, POF1B, KIF1A, NHS, LBH, HIST2H2BE, ABCC3, PYCR1, CD79A, IGF2BP3, ANKRD17, GTSE1, MKI67, CLSPN, PLAU, LUC7L, MAGIX, GPATCH4, and ABAT were potential downstream mRNAs. The association between the expression level of 20 DEGs and LUAD patient survival was analyzed using UALCAN, which showed that IGF2BP3, MKI67, CD79A, and ABAT were related to patient survival.Conclusion: The circRNA hsa_circ_0072088, the miRNAs hsa-miR-532-3p and hsa-miR-942-5p, and the genes IGF2BP3, MKI67, CD79A, and ABAT may serve as prognostic markers in LUAD.


2020 ◽  
Vol 29 (3) ◽  
pp. 399-416
Author(s):  
Dan Yang ◽  
Yang He ◽  
Bo Wu ◽  
Ruxi Liu ◽  
Nan Wang ◽  
...  

BACKGROUND: Lung adenocarcinoma (LUAD) is the most common histological subtype of lung cancer worldwide. Until now, the molecular mechanisms underlying LUAD progression have not been fully explained. This study aimed to construct a competing endogenous RNA (ceRNA) network to predict the progression in LUAD. METHODS: Differentially expressed lncRNAs (DELs), miRNAs (DEMs), and mRNAs (DEGs) were identified from The Cancer Genome Atlas (TCGA) database with a |log2FC|> 1.0 and a false discovery rate (FDR) < 0.05. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), protein-protein interaction (PPI) network, and survival analyses were performed to analyse these DEGs involved in the ceRNA network. Subsequently, the drug-gene interaction database (DGIdb) was utilized to select candidate LUAD drugs interacting with significant DEGs. Then, lasso-penalized Cox regression and multivariate Cox regression models were used to construct the risk score system. Finally, based on the correlations between DELs and DEGs involved in the risk score system, the final ceRNA network was identified. Meanwhile, the GEPIA2 database and immunohistochemical (IHC) results were utilized to validate the expression levels of selected DEGs. RESULTS: A total of 340 DELs, 29 DEMs, and 218 DEGs were selected to construct the initial ceRNA network. Functional enrichment analyses indicated that 218 DEGs were associated with the KEGG pathway terms “microRNAs in cancer”, “pathways in cancer”, “cell cycle”, “HTLV-1 infection”, and the “PI3K-Akt signalling pathway”. K-M survival analysis of all differentially expressed genes involved in the ceRNA network identified 24 DELs, 4 DEMs, and 29 DEGs, all of which were significantly correlated with LUAD progression (P< 0.05). Furthermore, 15 LUAD drugs interacting with 29 significant DEGs were selected. After lasso-penalized Cox regression and multivariate Cox regression modelling, PRKCE, DLC1, LATS2, and DPY19L1 were incorporated into the risk score system, and the results suggested that LUAD patients who had the high-risk score always suffered from a poorer overall survival. Additionally, the correlation coefficients between these 4 DEGs and their corresponding DELs involved in the ceRNA network suggested that there were 2 significant DEL-DEG pairs, NAV2-AS2 – PRKCE (r= 0.430, P< 0.001) and NAV2-AS2 – LATS2 (r= 0.338, P< 0.001). And NAV2-AS2 – mir-31 – PRKCE and NAV2-SA2 – mir-31 – LATS2 were finally identified as ceRNA network involved in the progression of LUAD. CONCLUSIONS: The lncRNA-miRNA-mRNA ceRNA network plays an essential role in predicting the progression of LUAD. These results may improve our understanding and provide novel mechanistic insights to explore prognosis and therapeutic drugs for LUAD patients.


2020 ◽  
Author(s):  
Dan Yang ◽  
Yang He ◽  
Bo Wu ◽  
Yan Deng ◽  
Ruxi Liu ◽  
...  

Abstract Background Lung adenocarcinoma (LUAD) is the most common histological subtype of lung cancer worldwide. Until now, the molecular mechanisms underlying LUAD progression have not been fully explained. This study aimed to identify a competing endogenous RNA (ceRNA) network in LUAD. Methods Differentially expressed lncRNAs (DELs), miRNAs (DEMs), and mRNAs (DEGs) were identified from The Cancer Genome Atlas (TCGA) database with a |log2FC| > 1.0 and a false discovery rate (FDR) < 0.05. Then, these DELs, DEMs, and DEGs were used to construct the initial ceRNA network. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), protein-protein interaction (PPI) network, and survival analyses were performed to analyse these DEGs involved in the ceRNA network. Subsequently, the drug-gene interaction database (DGIdb) was utilized to select candidate LUAD drugs interacting with significant DEGs. Then, lasso-penalized Cox regression and multivariate Cox regression models were used to construct the risk score system. Kaplan-Meier (K-M) survival curves and receiver operating characteristic (ROC) curves were utilized to validate the reliability of the risk score system. Finally, based on the correlations between DELs and DEGs involved in the risk score system, the final ceRNA network was identified. Results A total of 340 DELs, 29 DEMs, and 218 DEGs were selected to construct the initial ceRNA network. Functional enrichment analyses indicated that 218 DEGs were significantly enriched in the GO terms “nucleoplasm”, “transcription factor complex”, “protein binding”, and “metal ion binding”, whereas these DEGs were associated with the KEGG pathway terms “microRNAs in cancer”, “pathways in cancer”, “cell cycle”, “HTLV-1 infection”, and the “PI3K-Akt signalling pathway”. K-M survival analysis of all differentially expressed genes involved in the ceRNA network identified 24 DELs, 4 DEMs, and 29 DEGs, all of which were significantly correlated with LUAD progression (P < 0.05). Furthermore, 15 LUAD drugs interacting with 29 DEGs were selected. After lasso-penalized Cox regression and multivariate Cox regression modelling, 4 DEGs, PRKCE, DLC1, LATS2, and DPY19L1, were incorporated into the risk score system. The area under the curve (AUC) values of the time-dependent ROC curves at 3 years and 5 years were both higher than 0.5. Finally, the correlation coefficients between these 4 DEGs and their corresponding DELs involved in the ceRNA network suggested that there were 2 DEL-DEG pairs, NAV2-AS2 – PRKCE (r = 0.430, P < 0.001) and NAV2-AS2 – LATS2 (r = 0.338, P < 0.001). Considering the previously constructed ceRNA network, NAV2-AS2 – mir-31 – PRKCE and NAV2-SA2 – mir-31 – LATS2 were identified. Conclusions The lncRNA-miRNA-mRNA ceRNA network plays an essential role in LUAD. These results may improve our understanding and provide novel mechanistic insights to explore diagnostics, tumourigenesis, prognosis, and therapeutic drugs for LUAD patients.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Yuechao Liu ◽  
Xin Wang ◽  
Lulu Bi ◽  
Hongbo Huo ◽  
Shi Yan ◽  
...  

Background. Circular RNAs (circRNAs) may function as the decoys for microRNAs (miRNAs) or proteins, the templates for translation, and the sources of pseudogene generation. The purpose of this study is to determine the diagnostic circRNAs, which are related to lung adenocarcinoma (LUAD), that adsorb miRNAs on the basis of the competing endogenous RNA (ceRNA) hypothesis. Methods. The differentially expressed circRNAs (DEcircRNAs) in LUAD were revealed by the microarray data (GSE101586 and GSE101684) that were obtained from the Gene Expression Omnibus (GEO) database. The miRNAs that were targeted by the DEcircRNAs were predicted with the CircInteractome, and the target mRNAs of the miRNAs were found by the miRDB and the TargetScan. The ceRNA network was built by the Cytoscape. The potential biological roles and the regulatory mechanisms of the circRNAs were investigated by the Gene Ontology (GO) enrichment analysis and the Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. The expression of the host genes of circRNAs was examined by the Ualcan. The survival analysis was performed by the Kaplan–Meier plotter. Results. In comparison with normal lung tissues, LUAD tissues contained 7 overlapping cancer-specific DEcircRNAs with 294 miRNA response elements (MREs). Among the 7 DEcircRNAs, 3 circRNAs (hsa_circ_0072088, hsa_circ_0003528, and hsa_circ_0008274) were upregulated and 4 circRNAs (hsa_circ_0003162, hsa_circ_0029426, hsa_circ_0049271, and hsa_circ_0043256) were downregulated. A circRNA-miRNA-mRNA regulatory network, which included 33 differentially expressed miRNAs (DEmiRNAs) and 2007 differentially expressed mRNAs (DEmRNAs), was constructed. These mRNAs were enriched in the biological function of cell-cell adhesion, response to hypoxia, and stem cell differentiation and were involved in the PI3K-Akt signaling, HIF-1 signaling, and cAMP signaling pathways. Conclusion. Our results indicated that 7 DEcircRNAs could have diagnostic value for LUAD. Additionally, the circRNAs-mediated ceRNA network might provide a novel perspective into unraveling the pathogenesis and progression of LUAD.


BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Yang Xi ◽  
Zhuang Jing ◽  
Wu Wei ◽  
Zhang Chun ◽  
Qi Quan ◽  
...  

Abstract Background Sodium butyrate (NaB) is produced through the fermentation of dietary fiber that is not absorbed and digested by the small intestine. Purpose Here, we aimed to investigate the effects of NaB on the proliferation, invasion, and metastasis of CRC cells and their potential underlying molecular mechanism(s). Methods The cell counting kit-8 (CCK-8) assay and EdU assay were used to detect cell proliferation ability, flow cytometry was used to investigate the induction of apoptosis and cell cycle progression, and the scratch-wound healing and transwell assays were used to evaluate cell migration and invasion, respectively. The human CRC genome information for tissues and CRC cells treated with NaB obtained from the NCBI GEO database was reannotated and used for differential RNA analysis. Functional and pathway enrichment analyses were performed for differentially expressed lncRNAs and mRNAs. A protein-protein interaction (PPI) network for the hub genes was constructed using the Cytoscape software. Targeted miRNAs were predicted based on the lnCeDB database, and a ceRNA network was constructed using the Cytoscape software. The Kaplan-Meier method was used to analyze patient prognosis using the clinical information and exon-seq data for CRC obtained from the Broad Institute’s GDAC Firehose platform. Results NaB decreased the proliferation ability of CRC cells in a dose- and time-dependent manner. The number of apoptotic CRC cells increased with the increase in NaB concentrations, and NaB induced a G1 phase block in CRC cells. Moreover, NaB suppressed the migratory and invasive capabilities of CRC cells. There were 666 differentially expressed mRNAs and 30 differentially expressed lncRNAs involved in the CRC inhibition by NaB. The PPI network and ceRNA network were constructed based on the differentially expressed mRNAs and lncRNAs. Three differentially expressed mRNAs, including HMGA2, LOXL2, and ST7, were significantly correlated with the prognosis of CRC. Conclusion NaB induces the apoptosis and inhibition of CRC cell proliferation, invasion, and metastasis by modulating complex molecular networks. RNA prediction and molecular network construction need to be the focus of further research in this direction.


Sign in / Sign up

Export Citation Format

Share Document