scholarly journals N-acetylcysteine resists high-glucose-induced injury of human umbilical vein endothelial cells by inhibiting the leptin/leptin receptor

2020 ◽  
Author(s):  
Zhenhua Wang ◽  
Jun Chen ◽  
Shuping Lian ◽  
Kaibin Liao ◽  
Lizhi Huang ◽  
...  

Abstract Baclground The present study aimed to investigate whether N- acetylcysteine (NAC) protects human umbilical vein endothelial cells (HUVECs) against high glucose (HG)-induced injury by inhibiting leptin/leptin receptor (LEPR).Methods HUVECs were treated with 40 mmol/L glucose for 24 h to establish a model of HG-induced endothelial cell injury; The cell viability was examined by cell counter kit-8(CCK-8) assay; The expression levels of leptin, LEPR, cleaved caspase-3 and endothelial nitric oxide synthase (eNOS) were detected by western blot. The intracellular levels of reactive oxygen species (ROS) were tested by DCFH-DA staining followed by photofluorography. Tumor necrosis factor-α (TNF-α)、nuclear factor-kappa B (NF-κB) and intercellular adhesion molecule-1 (ICAM-1) were detected by enzyme-linked immunosorbent assay (ELISA). The number of apoptotic cells was observed by photofluorograph with Hoechst 33258 nuclear staining. Mitochondrial membrane potential (MMP) was obtained using JC-1. Results The expression of leptin and LEPR began to significantly increase after exposure to 40 mmol/L HG for 24 h. Pretreatment of HUVECs with 7 mmol/L NAC or 50 ng/mL leptin antagonists (LA) for 30min inhibited the increased expression of leptin and LEPR induced by HG in HUVECs. Furthermore, pretreatment with 7 mmol/L NAC or 50 ng/mL LA for 30 min also inhibited HG-induced injury, by increasing the cell viability and eNOS expression, and decreasing the inflammatory response and cleaved caspase-3 expression, the apoptotic cells and generation of intracellular ROS and a loss of MMP. Conclusions NAC protects the HUVECs against HG-induced injury by inhibiting leptin/LEPR.

2020 ◽  
Author(s):  
Zhenhua Wang ◽  
Jun Chen ◽  
Shuping Lian ◽  
Kaibin Liao ◽  
Lizhi Huang ◽  
...  

Abstract Background The present study aimed to investigate whether N- acetylcysteine (NAC) protects human umbilical vein endothelial cells (HUVECs) against high glucose (HG)-induced injury by inhibiting leptin/leptin receptor (LEPR). Methods HUVECs were treated with 40 mmol/L glucose for 24 h to establish a model of HG-induced endothelial cell injury; The cell viability was examined by cell counter kit-8 (CCK-8) assay; The expression levels of leptin, LEPR, cleaved caspase-3 and endothelial nitric oxide synthase (eNOS) were detected by western blot. The intracellular levels of reactive oxygen species (ROS) were tested by DCFH-DA staining followed by photofluorography. Tumor necrosis factor-α (TNF-α)、nuclear factor-kappa B (NF-κB) and intercellular adhesion molecule-1 (ICAM-1) were detected by enzyme-linked immunosorbent assay (ELISA). The number of apoptotic cells was observed by photofluorograph with Hoechst 33258 nuclear staining. Mitochondrial membrane potential (MMP) was obtained using JC-1.Results The expression of leptin and LEPR began to significantly increase after exposure to 40 mmol/L HG for 24 h. Pretreatment of HUVECs with 7 mmol/L NAC or 50 ng/mL leptin antagonists (LA) for 30min inhibited the increased expression of leptin and LEPR induced by HG in HUVECs. Furthermore, pretreatment with 7 mmol/L NAC or 50 ng/mL LA for 30 min also inhibited HG-induced injury, by increasing the cell viability and eNOS expression, and decreasing the inflammatory response and cleaved caspase-3 expression, the apoptotic cells and generation of intracellular ROS and a loss of MMP. Conclusions NAC protects the HUVECs against HG-induced injury by inhibiting leptin/LEPR.


2016 ◽  
Vol 39 (3) ◽  
pp. 847-859 ◽  
Author(s):  
Jie Li ◽  
Junfeng Li ◽  
Tingting Wei ◽  
Junhua Li

Background/Aims: To investigate the effects of miR-137 on high glucose (HG)-induced vascular injury, and to establish the mechanism underlying these effects. Methods: Human umbilical vein endothelial cells (HUVECs) were transfected with miR-137 inhibitor or mimic, and then treated with normal or high glucose. Cell viability and apoptosis were detected by using the Cell Counting Kit-8 (CCK-8) assay and flow cytometry, respectively. Reactive oxygen species (ROS), malondialdehyde (MDA), and superoxide dismutase (SOD) were detected by fluorescent probe (DCFH-DA), thiobarbituric acid reaction, and the nitroblue tetrazolium assay, respectively. The mRNA and protein expressions of AMPKα1 were determined by qRT-PCR and Western blotting. Results: Down-regulation of miR-137 dramatically reverted HG-induced decreases in cell viability and SOD levels and increases in apoptosis, ROS and MDA levels. Moreover, bioinformatics analysis predicted that the AMPKα1 was a potential target gene of miR-137. Luciferase reporter assay demonstrated that miR-137 could directly target AMPKα1. AMPKα1 overexpression had the similar effect as miR-137 inhibition. Down-regulation of AMPKα1 in HUVECs transfected with miR-137 inhibitor partially reversed the protective effect of miR-137 inhibition on HG-induced oxidative stress in HUVECs. Conclusion: Down-regulation of miR-137 ameliorates HG-induced injury in HUVECs by overexpression of AMPKα1, leading to increasing cellular reductive reactions and decreasing oxidative stress. These results provide further evidence for protective effect of miR-137 inhibition on HG-induced vascular injury.


2017 ◽  
Vol 45 (06) ◽  
pp. 1201-1216 ◽  
Author(s):  
Li-Yen Huang ◽  
I-Chuan Yen ◽  
Wei-Cheng Tsai ◽  
Blerina Ahmetaj-Shala ◽  
Tsu-Chung Chang ◽  
...  

Rhodiola crenulata root extract (RCE), a traditional Chinese medicine, has been shown to regulate glucose and lipid metabolism via the AMPK pathway in high glucose (HG) conditions. However, the effect of RCE on HG-induced endothelial dysfunction remains unclear. The present study was designed to examine the effects and mechanisms of RCE against hyperglycemic insult in endothelial cells. Human umbilical vein endothelial cells (HUVECs) were pretreated with or without RCE and then exposed to 33[Formula: see text]mM HG medium. The cell viability, nitrite production, oxidative stress markers, and vasoactive factors, as well as the mechanisms underlying RCE action, were then investigated. We found that RCE significantly improved cell death, nitric oxide (NO) defects, and oxidative stress in HG conditions. In addition, RCE significantly decreased the HG-induced vasoactive markers, including endothelin-1 (ET-1), fibronectin, and vascular endothelial growth factor (VEGF). However, the RCE-restored AMPK-Akt-eNOS-NO axis and cell viability were abolished by the presence of an AMPK inhibitor. These findings suggested that the protective effects of RCE were associated with the AMPK-Akt-eNOS-NO signaling pathway. In conclusion, we showed that RCE protected endothelial cells from hyperglycemic insult and demonstrated its potential for use as a treatment for endothelial dysfunction in diabetes mellitus.


2008 ◽  
Vol 101 (8) ◽  
pp. 1165-1170 ◽  
Author(s):  
Chia-Lun Chao ◽  
Yu-Chi Hou ◽  
Pei-Dawn Lee Chao ◽  
Ching-Sung Weng ◽  
Feng-Ming Ho

Diabetes mellitus is an important risk factor for CVD. A previous study showed that high glucose induced the apoptosis of human umbilical vein endothelial cells (HUVEC) via the sequential activation of reactive oxygen species, Jun N-terminal kinase (JNK) and caspase-3. The apoptosis cascade could be blocked by ascorbic acid at the micromolar concentration (100 μm). In addition to ascorbic acid, quercetin, the most abundant dietary flavonol, has been recently actively studied in vascular protection effects due to its antioxidant effect at low micromolar concentrations (10–50 μm). Quercetin sulfate/glucuronide, the metabolite of quercetin in blood, however, has been rarely evaluated. In the present study, we investigated the effect of quercetin sulfate/glucuronide on the prevention of high glucose-induced apoptosis of HUVEC. HUVEC were treated with media containing high glucose (33 mm) in the presence or absence of ascorbic acid (100 μm) or quercetin sulfate/glucuronide (100 nm, 300 nm and 1 μm). For the detection of apoptosis, a cell death detection ELISA assay was used. The level of intracellular H2O2 was measured by flow cytometry. JNK and caspase-3 were evaluated by a kinase activity assay and Western blot analysis. The results showed that high glucose-induced apoptosis was inhibited by quercetin sulfate/glucuronide in a dose-dependent manner. The effect of quercetin sulfate/glucuronide on H2O2 quenching, inhibition of JNK and caspase-3 activity at the nanomolar concentration (300 nm) was similar to that of ascorbic acid at the micromolar concentration (100 μm). The findings of the present study may shed light on the pharmacological application of quercetin in CVD.


2007 ◽  
Vol 566 (1-3) ◽  
pp. 1-10 ◽  
Author(s):  
Hiroshi Tsuneki ◽  
Naoto Sekizaki ◽  
Takashi Suzuki ◽  
Shinjiro Kobayashi ◽  
Tsutomu Wada ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document