rhodiola crenulata
Recently Published Documents


TOTAL DOCUMENTS

118
(FIVE YEARS 38)

H-INDEX

18
(FIVE YEARS 5)

2022 ◽  
Author(s):  
Huilan Yue ◽  
Luya Wang ◽  
Sirong Jiang ◽  
Cailang Banma ◽  
Wenjing Jia ◽  
...  

Rhodiola crenulata (HK. f. et.Thoms) H. Ohba (RC), mainly distributed in the high cold region in China, has long been used as a medicine/healthy food for eliminating fatigue and increasing...


Molecules ◽  
2021 ◽  
Vol 26 (23) ◽  
pp. 7383
Author(s):  
Tingting Dong ◽  
Yueqi Sha ◽  
Hairong Liu ◽  
Liwei Sun

Rhodiolacrenulata (Hook.f. & Thomson) H.Ohba is an alpine medicinal plant that can survive in extreme high altitude environments. However, its changes to extreme high altitude are not yet clear. In this study, the response of Rhodiola crenulata to differences in altitude gradients was investigated through chemical, ICP-MS and metabolomic methods. A targeted study of Rhodiola crenulata growing at three vertical altitudes revealed that the contents of seven elements Ca, Sr, B, Mn, Ni, Cu, and Cd, the phenolic components, the ascorbic acid, the ascorbic acid/dehydroascorbate ratio, and the antioxidant capacity were positively correlated with altitude, while the opposite was true for total ascorbic acid content. Furthermore, 1165 metabolites were identified: flavonoids (200), gallic acids (30), phenylpropanoids (237), amino acids (100), free fatty acids and glycerides (56), nucleotides (60), as well as other metabolites (482). The differential metabolite and biomarker analyses suggested that, with an increasing altitude: (1) the shikimic acid-phenylalanine-phenylpropanoids-flavonoids pathway was enhanced, with phenylpropanoids upregulating biomarkers much more than flavonoids; phenylpropanes and phenylmethanes upregulated, and phenylethanes downregulated; the upregulation of quercetin was especially significant in flavonoids; upregulation of condensed tannins and downregulation of hydrolyzed tannins; upregulation of shikimic acids and amino acids including phenylalanine. (2) significant upregulation of free fatty acids and downregulation of glycerides; and (3) upregulation of adenosine phosphates. Our findings provide new insights on the responses of Rhodiola crenulata to extreme high altitude adversity.


2021 ◽  
Vol 70 (7) ◽  
Author(s):  
Li Wang ◽  
Yuhe Wang ◽  
Wei Yang ◽  
Xue He ◽  
Shilin Xu ◽  
...  

Introduction. Coronavirus disease 2019 (COVID-19) is a highly contagious disease and ravages the world. Hypothesis/Gap Statement. We proposed that R. crenulata might have potential value in the treatment of COVID-19 patients by regulating the immune response and inhibiting cytokine storm. Aim. We aimed to explore the potential molecular mechanism for Rhodiola crenulata (R. crenulata), against the immune regulation of COVID-19, and to provide a referenced candidate Tibetan herb (R. crenulata) to overcome COVID-19. Methodology. Components and targets of R. crenulata were retrieved from the TCMSP database. GO analysis and Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathway enrichment were built by R bioconductor package to explore the potential biological effects for targets of R. crenulata. The R. crenulata-compound-target network, target pathway network and protein–protein interaction (PPI) network were constructed using Cytoscape 3.3.0. Autodock 4.2 and Discovery Studio software were applied for molecular docking. Result. Four bioactive components (quercetin, kaempferol, kaempferol-3-O-α-l-rhamnoside and tamarixetin) and 159 potential targets of R. crenulata were identified from the TCMSP database. The result of GO annotation and KEGG-pathway-enrichment analyses showed that target genes of R. crenulata were associated with inflammatory response and immune-related signalling pathways, especially IL-17 signalling pathway, and TNF signalling pathway. Targets-pathway network and PPI network showed that IL-6, IL-1B and TNF-α were considered to be hub genes. Molecular docking showed that core compound (quercetin) had a certain affinity with IL-1β, IL-6 and TNF-α. Conclusion. R. crenulata might play an anti-inflammatory and immunoregulatory role in the cytokine storm of COVID-19.


Sign in / Sign up

Export Citation Format

Share Document