Experimental Investigation of the Effect of the Machine Kinematic Behavior on the Surface Topography and Roughness in High Speed Ball end Milling of the AISI4142 Steel

Author(s):  
Sai Lotfi ◽  
Belguith Rami ◽  
Baili Maher ◽  
Desseins Gilles ◽  
Bouzid Wassila

Abstract The analysis of the surface topography in ball end milling is an objective studied by many researchers, several methods were used and many combinations of cutting conditions and machining errors are considered. In the milling tool paths the trajectories presents a points of changing direction where the tool decelerates before and accelerates after respecting the velocity profiles of the machine. In this paper, we propose experimental investigations of the effect of the kinematic behavior of the machine tool on the surface quality. A poor topography and roughness are remarked on the deceleration and the acceleration zones compared to the stationary zone.

2009 ◽  
Vol 69-70 ◽  
pp. 471-475 ◽  
Author(s):  
Shi Guo Han ◽  
Jun Zhao ◽  
Xiao Feng Zhang

In five-axis high speed milling of freeform surface with ball-end cutters, unwanted machining results are usually introduced by some error effects. Hence precise modeling and simulation of milled sculptured surfaces topography and roughness is the key to obtain optimal process parameters, satisfactory surface quality and high machining efficiency. In this paper, a predictive model for sculptured surface topography and roughness of ball-end milling is developed. Firstly, a mathematical model including both the relative motion of the cutter-workpiece couple and some influential factors on machined surface quality such as the tool runout, tool deflection and tool wear is proposed, and subsequently the analytical form of the tool swept envelope is derived by means of homogeneous coordinate transformation. Then the minimal z-values of the corresponding points lied in discrete cutting edges model and Z-map workpiece model are used to update the workpiece surface topography and to calculate 3D surface roughness. Finally, the simulation algorithm is realized with Matlab software. A series of machining tests on 3Cr2MoNi steel are conducted to validate the model, and the machined surface topography is found in good accordance with the simulation result.


Micromachines ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1203
Author(s):  
Yongheng Dong ◽  
Shujuan Li ◽  
Qian Zhang ◽  
Pengyang Li ◽  
Zhen Jia ◽  
...  

The trochoidal milling mode is widely used in high-speed machining, and due to good adaptability and flexible posture adjustment, ball-end milling cutters are conducive to complex surface machining with this mode. However, the processes of material removal and formation of machined micro surfaces are very difficult to describe as the profile of cutter teeth is complex and the trajectory direction changes continuously during the trochoidal milling process. A modeling method for the generation of micro surface topography of ball-end milling in the trochoidal milling mode is put forward. In this method, the locus equation of each cutter tooth is established based on the principle of homogeneous coordinate transformation, after which a Z-MAP algorithm is designed to simulate the micro surface topography. The Z-MAP algorithm can quickly obtain the part grid nodes potentially swept by the cutter tooth within a unit time step through the establishment of servo rectangular encirclement and instantaneous sweeping quadrilateral of the element of cutter teeth; the part grid nodes actually swept are further determined through an angle summation method, and the height coordinate is calculated with the method of linear interpolation according to Taylor’s formula of multivariate functions. Experiments showed that the micro surface topography resulting from ball-end milling in the trochoidal milling mode had high consistency with the simulation, which indicates that the proposed method can predict micro surface topography in practical manufacturing. In addition, a comparison of micro surface topography between trochoidal milling and ordinary straight-linear milling was conducted, and the results showed that the former was overall superior to the latter in resulting characteristics. Based on this conclusion, the influences of cutting parameters of ball-end trochoidal milling on surface characteristics, particularly amplitude and function, were analyzed according to the simulated micro surface topography data.


1996 ◽  
Vol 118 (2) ◽  
pp. 178-187 ◽  
Author(s):  
E. D. Tung ◽  
M. Tomizuka ◽  
Y. Urushisaki

Experiments are performed for end milling aluminum at 15,000 RPM spindle speed (1,508 m/min cutting speed) and up to 3 m/min table feedrate using an experimental machine tool control system. A digital feedforward controller for feed drive control incorporates the Zero Phase Error Tracking Controller (ZPETC) and feedforward friction compensation. The controller achieves near-perfect (±3 μm) tracking over a 26 mm trajectory with a maximum speed of 2 m/min. The maximum contouring error for a 26 mm diameter circle at this speed is less than 4 μm. Tracking and contouring experiments are conducted for table feedrates as high as 10 m/min. Frequency domain analysis demonstrates that the feedforward controller achieves a bandwidth of 10 Hz without phase distortion. In a direct comparison of accuracy, the machining errors in specimens produced by the experimental controller were up to 20 times smaller than the errors in specimens machined by an industrial CNC.


CONVERTER ◽  
2021 ◽  
pp. 748-756
Author(s):  
Ningxia Yin Et al.

Advanced cooling technology is a crucial measure of thermal dissipation for high-speed end-milling. In order to get an appropriate cooling technology and decrease the negative effects of traditional wet cutting, internally cooled cutting has been paid more and more attention. Because of interrupted cutting and uneven force, there was few application and investigation on internally cooled end-milling. In the paper, the effect of the end-milling tool with different internally cooled channel structure has been researched by experiment and theoretical analysis. The experimental results indicate that the end-milling tool with double helix channels carried out best machined surface quality. And the experiment result was also been analyzed and explained by computational fluid dynamics simulation, which provides a basis for the applying of the high-speed internally cooled end-milling tool.


2011 ◽  
Vol 10 (01) ◽  
pp. 101-108 ◽  
Author(s):  
XIULIN SUI ◽  
IMRE HORVATH ◽  
JIATAI ZHANG ◽  
PING ZHANG

Ball-end milling tools have been widely used in machining of complex freeform surfaces. The precision and efficiency of ball-end milling process can be improved by an accurate modeling of the tools, the tools' paths and the machining conditions. However, only rough geometric models have been applied so far, which do not consider the machining conditions and the physical changes. To achieve the best results, an accurate modeling of the cutting edge and the physical behavior of the entire cutter is needed. This paper proposes an articulated model that enumerates both the geometric characteristics and the physical effects acting on the cutting edge-segment of a ball-end milling cutter. The model considers the deformations caused by the milling forces, vibration, spindle eccentricity, together with thermal deformation and wear of the cutter. The mathematical description of the behavior has been transferred into a computational model. The pilot implementation has been tested in a practical application. The first findings show that the proposed theoretical model and implementation provide sufficiently precise information about the behavior of the cutter in virtual simulations; hence it can be the basis of a fully fledged and more efficient planning of milling processes.


Author(s):  
Wei-Hong Zhang ◽  
Gang Tan ◽  
Min Wan ◽  
Tong Gao ◽  
David Hicham Bassir

In milling process, surface topography is a significant factor that affects directly the surface integrity and constitutes a supplement to the form error associated with the workpiece deformation. Based on the tool machining paths and the trajectory equation of the cutting edge relative to the workpiece, a new and general iterative algorithm is developed here for the numerical simulation of the machined surface topography in multiaxis ball-end milling. The influences of machining parameters such as the milling modes, cutter runout, cutter inclination direction, and inclination angle upon the topography and surface roughness values are studied in detail. Compared with existing methods, the basic advantages and novelties of the proposed method can be resumed below. First, it is unnecessary to discretize the cutting edge and tool feed motion and rotation motion. Second, influences of cutting modes and cutter inclinations are studied systematically and explicitly for the first time. The generality of the algorithm makes it possible to calculate the pointwise topography value on any sculptured surface of the workpiece. Besides, the proposed method is proved to be more efficient in saving computing time than the time step method that is commonly used. Finally, some examples are presented and simulation results are compared with experimental ones.


Sign in / Sign up

Export Citation Format

Share Document