scholarly journals PbLAC4-like, activated by PbMYB26, related to the degradation of anthocyanin during color fading in pear

Author(s):  
Guangping Zhao ◽  
Fangxin Xiang ◽  
Shichao Zhang ◽  
Junxing Song ◽  
Xieyu Li ◽  
...  

Abstract Background Anthocyanin degradation results in the loss of red color in leaves, petals and receptacles during development. But the degradation mechanism is not fully investigated. It is vital to study the degradation mechanism of anthocyanin in pear for promoting the accumulation of anthocyanin and inhibiting the red fading in pear. Results Here, we reported that laccase encoded by PbLAC4-like was associated with anthocyanin degradation in pear. The expression pattern of PbLAC4-like was negatively correlated with the content of anthocyanin during the color fading process of pear leaves, petals and receptacles. Phylogenetic analysis and sequence alignment revealed that PbLAC4-like played a vital role in anthocyanin degradation. Thus, the degradation of anthocyanin induced by PbLAC4-like was further verified by transient assays and prokaryotic expression. More than 80% of anthocyanin compounds were degraded by transiently over-expressed PbLAC4-like in pear fruitlet peel. The activity of crude enzyme to degrade anthocyanin in leaves at different stages was basically consistent with the expression of PbLAC4-like. The anthocyanin degradation ability of prokaryotic induced PbLAC4-like protein was also verified by enzyme activity assay. Besides, we also identified PbMYB26 as a positive regulator of PbLAC4-like. Yeast one-hybrid and dual luciferase assay results showed that PbMYB26 activated PbLAC4-like expression by directly binding to the PbLAC4-like promoter. Conclusions Taken together, the PbLAC4-like activated by PbMYB26, was involved in the degradation of anthocyanin, resulting in the redness fading in different pear tissues.

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Guangping Zhao ◽  
Fangxin Xiang ◽  
Shichao Zhang ◽  
Junxing Song ◽  
Xieyu Li ◽  
...  

Abstract Background Decrease in anthocyanin content results in the loss of red color in leaves, petals and receptacles during development. The content of anthocyanin was affected by the biosynthesis and degradation of anthocyanin. Compared with the known detailed mechanism of anthocyanin biosynthesis, the degradation mechanism is not fully investigated. It is vital to study the degradation mechanism of anthocyanin in pear for promoting the accumulation of anthocyanin and inhibiting the red fading in pear. Results Here, we reported that laccase encoded by PbLAC4-like was associated with anthocyanin degradation in pear. The expression pattern of PbLAC4-like was negatively correlated with the content of anthocyanin during the color fading process of pear leaves, petals and receptacles. Phylogenetic analysis and sequence alignment revealed that PbLAC4-like played a vital role in anthocyanin degradation. Thus, the degradation of anthocyanin induced by PbLAC4-like was further verified by transient assays and prokaryotic expression. More than 80% of anthocyanin compounds were degraded by transiently over-expressed PbLAC4-like in pear fruitlet peel. The activity of crude enzyme to degrade anthocyanin in leaves at different stages was basically consistent with the expression of PbLAC4-like. The anthocyanin degradation ability of prokaryotic induced PbLAC4-like protein was also verified by enzyme activity assay. Besides, we also identified PbMYB26 as a positive regulator of PbLAC4-like. Yeast one-hybrid and dual luciferase assay results showed that PbMYB26 activated PbLAC4-like expression by directly binding to the PbLAC4-like promoter. Conclusions Taken together, the PbLAC4-like activated by PbMYB26, was involved in the degradation of anthocyanin, resulting in the redness fading in different pear tissues.


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Li-Na Gao ◽  
Ye Zhang ◽  
Yuan-Lu Cui ◽  
Olunga Mary Akinyi

Peony (Paeonia lactifloraPall-) is a plant medicine and a functional food ingredient with wide application for more than 2000 years. It can be coadministrated with many other drugs, composed of traditional Chinese medicine compound such as shaoyao-gancao decoction. In order to explore the efficacy and safety of peony, effects of paeoniflorin and albiflorin (the principal components of peony) on cytochrome P450 (CYP) 3A4 and CYP2D6 were analyzed in human hepatoma HepG2 cells and evaluated from the level of recombinant CYP enzymesin vitro. The findings indicated that albiflorin possessed stronger regulation on the mRNA expression of CYP3A4 and CYP2D6 than paeoniflorin. For the protein level of CYP3A4, albiflorin showed significant induction or inhibition with the concentration increasing from 10−7 M to 10−5 M, but no remarkable variation was observed in paeoniflorin-treated group. Enzyme activity assay implied that both paeoniflorin and albiflorin could regulate CYP3A4 and CYP2D6 with varying degrees. The results showed that albiflorin should be given more attention because it may play a vital role on the overall efficacy of peony. The whole behavior of both paeoniflorin and albiflorin should be focused on ensuring the rationality and effectiveness of clinical application.


2010 ◽  
Vol 31 (6) ◽  
pp. 499-503
Author(s):  
Hai-Jun ZHANG ◽  
Jun YANG ◽  
Xiao-Guang LIU ◽  
Xiang-Yang HU

Horticulturae ◽  
2021 ◽  
Vol 7 (8) ◽  
pp. 231
Author(s):  
Yajing Li ◽  
Xiaofen Liu ◽  
Fang Li ◽  
Lili Xiang ◽  
Kunsong Chen

Anthocyanin is the crucial pigment for the coloration of red chrysanthemum flowers, which synthesizes in the cytosol and is transported to the vacuole for stable storage. In general, glutathione S-transferases (GSTs) play a vital role in this transport. To date, there is no functional GST reported in chrysanthemums. Here, a total of 94 CmGSTs were isolated from the chrysanthemum genome, with phylogenetic analysis suggesting that 16 members of them were clustered into the Phi subgroup which was related to anthocyanin transport. Among them, the expression of CmGST1 was positively correlated with anthocyanin accumulation. Protein sequence alignment revealed that CmGST1 included anthocyanin-related GST-specific amino acid residues. Further transient overexpression experiments in tobacco leaves showed that CmGST1 could promote anthocyanin accumulation. In addition, a dual-luciferase assay demonstrated that CmGST1 could be regulated by CmMYB6, CmbHLH2 and CmMYB#7, which was reported to be related to anthocyanin biosynthesis. Taken together, we suggested that CmGST1 played a key role in anthocyanin transport and accumulation in chrysanthemums.


2020 ◽  
Author(s):  
Yinghui Hong ◽  
Dan Wang ◽  
Mingliang Ye ◽  
Chun Wang ◽  
Jie Luo ◽  
...  

Abstract BackgroundHepatocellular carcinoma (HCC) remains the global burden due to its high prevalence and mortality. Emerging evidence confirms that microRNAs (miRNAs) play a vital role in cancer initiation and progression. MiRNAs are widely involved in the regulation of signaling pathways by targeting downstream genes. MiR-21-3p as a liver-enriched miRNA has not been fully investigated. Abnormal activation of TGF-β transduction pathway promoted by deletion of Smad7 matters since HCC occurrence. While the relation between miR-21-3p and Smad7 has not yet been confirmed. We aimed to explore the influence of miR-21-3p on HCC initiation and progression by targeting Smad7 and further facilitating the expression of Yap1. Methods MicroRNA (miRNA) microarray analysis was performed for miRNA screening. Dual-luciferase assay was adopted for target verifying. The expressions of miRNA and related genes were quantified by qRT-PCR, western blotting, and immunohistochemical staining. Flow cytometry and transwell assay were used to discover cell apoptosis, invasion and metastasis abilities. Rat models were established to explore the axis's role in hepatocarcinogenesis. Bioinformatics analysis was performed for analyzing clinical significance. Results ­ MiR-21-3p was significantly increased in HCC, indicating a poor overall survival (OS) rate. High miR-21-3p was associated with advanced stages (P=0.029), especially T stages (P=0.026). Low Smad7/high Yap1 was verified in HCCs and rat models. Smad7 was proved to be the direct target of miR-21-3p. MiR-21-3p's effect on tumor malignant phenotypes and promotion of Yap1 could be partly reversed through transfecting Smad7. Overexpressed Yap1 promoted the downstream effector connective tissue growth factor (CTGF). Co-survival analysis indicated that lower miR-21-3p/higher Smad7 (P=0.0494) and lower miR-21-3p/lower Yap1 group (P=0.0379) patients had better OS rates. GSVA analysis of miR-21-3p and Smad7 related gene sets displayed strong relation with TGF-β signaling pathway in HCC. Conclusions MiR-21-3p promotes HCC migration and invasion via directly inhibiting Smad7 and further improving the expression of Yap1.


2012 ◽  
Vol 105 (3) ◽  
pp. 404-407 ◽  
Author(s):  
Taiichi Wakiya ◽  
Yukihiro Sanada ◽  
Taizen Urahashi ◽  
Yoshiyuki Ihara ◽  
Naoya Yamada ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document