scholarly journals Flagella by numbers: comparative genomic analysis of the supernumerary flagellar systems among the Enterobacterales

2020 ◽  
Author(s):  
Pieter De Maayer ◽  
Talia Pillay ◽  
Teresa A Coutinho

Abstract Background: Flagellar motility is an efficient means of movement that allows bacteria to successfully colonize and compete with other microorganisms within their respective environments. The production and functioning of flagella is highly energy intensive and therefore flagellar motility is a tightly regulated process. Despite this, some bacteria have been observed to possess multiple flagellar systems which allow distinct forms of motility. Results: Comparative genomic analyses showed that, in addition to the previously identified primary peritrichous (flag-1) and secondary, lateral (flag-2) flagellar loci, three novel types of flagellar loci, varying in both gene content and gene order, are encoded on the genomes of members of the order Enterobacterales. The flag-3 and flag-4 loci encode predicted peritrichous flagellar systems while the flag-5 locus encodes a polar flagellum. In total, 798/4,028 (~20%) of the studied taxa incorporate dual flagellar systems, while nineteen taxa incorporate three distinct flagellar loci. Phylogenetic analyses indicate the complex evolutionary histories of the flagellar systems among the Enterobacterales. Conclusions: Supernumerary flagellar loci are relatively common features across a broad taxonomic spectrum in the order Enterobacterales. Here, we report the occurrence of five (flag-1 to flag-5) flagellar loci on the genomes of enterobacterial taxa, as well as the occurrence of three flagellar systems in select members of the Enterobacterales. Considering the energetic burden of maintaining and operating multiple flagellar systems, they are likely to play a role in the ecological success of members of this family and we postulate on their potential biological functions.

BMC Genomics ◽  
2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Pieter De Maayer ◽  
Talia Pillay ◽  
Teresa A. Coutinho

Abstract Background Flagellar motility is an efficient means of movement that allows bacteria to successfully colonize and compete with other microorganisms within their respective environments. The production and functioning of flagella is highly energy intensive and therefore flagellar motility is a tightly regulated process. Despite this, some bacteria have been observed to possess multiple flagellar systems which allow distinct forms of motility. Results Comparative genomic analyses showed that, in addition to the previously identified primary peritrichous (flag-1) and secondary, lateral (flag-2) flagellar loci, three novel types of flagellar loci, varying in both gene content and gene order, are encoded on the genomes of members of the order Enterobacterales. The flag-3 and flag-4 loci encode predicted peritrichous flagellar systems while the flag-5 locus encodes a polar flagellum. In total, 798/4028 (~ 20%) of the studied taxa incorporate dual flagellar systems, while nineteen taxa incorporate three distinct flagellar loci. Phylogenetic analyses indicate the complex evolutionary histories of the flagellar systems among the Enterobacterales. Conclusions Supernumerary flagellar loci are relatively common features across a broad taxonomic spectrum in the order Enterobacterales. Here, we report the occurrence of five (flag-1 to flag-5) flagellar loci on the genomes of enterobacterial taxa, as well as the occurrence of three flagellar systems in select members of the Enterobacterales. Considering the energetic burden of maintaining and operating multiple flagellar systems, they are likely to play a role in the ecological success of members of this family and we postulate on their potential biological functions.


2020 ◽  
Author(s):  
Pieter De Maayer ◽  
Talia Pillay ◽  
Teresa A Coutinho

Abstract Background: Flagellar motility is an efficient means of movement that allows bacteria to successfully colonize and compete with other microorganisms within their respective environments. The production and functioning of flagella is highly energy intensive and therefore flagellar motility is a tightly regulated process. Despite this, some bacteria have been observed to possess multiple flagellar systems which allow distinct forms of motility. Results: Comparative genomic analyses showed that, in addition to the previously identified primary peritrichous (flag-1) and secondary, lateral (flag-2) flagellar loci, three novel types of flagellar loci, varying in both gene content and gene order, are encoded on the genomes of members of the order Enterobacterales. The flag-3 and flag-4 loci encode predicted peritrichous flagellar systems while the flag-5 locus encodes a polar flagellum. In total, 798/4,028 (~20%) of the studied taxa incorporate dual flagellar systems, while nineteen taxa incorporate three distinct flagellar loci. Phylogenetic analyses indicate the complex evolutionary histories of the flagellar systems among the Enterobacterales. Conclusions: Supernumerary flagellar loci are relatively common features across a broad taxonomic spectrum in the order Enterobacterales. Here, we report the occurrence of five (flag-1 to flag-5) flagellar loci on the genomes of enterobacterial taxa, as well as the occurrence of three flagellar systems in select members of the Enterobacterales. Considering the energetic burden of maintaining and operating multiple flagellar systems, they are likely to play a role in the ecological success of members of this family and we postulate on their potential biological functions.


2020 ◽  
Author(s):  
Pieter De Maayer ◽  
Talia Pillay ◽  
Teresa A Coutinho

Abstract Background Flagellar motility is an efficient means of movement that allows bacteria to successfully colonize and compete with other microorganisms within their respective environments. The production and functioning of these structures is highly energy intensive and as such flagellar motility is a tightly regulated process. Despite this, some bacteria have been observed to possess multiple flagellar systems which allow distinct forms of motility. Results Comparative genomic analyses showed that, in addition to the previously identified primary peritrichous (flag-1) and secondary, lateral (flag-2) flagellar loci, three novel types of flagellar loci, varying in both gene content and gene order, are encoded on the genomes of members of the order Enterobacterales. The flag-3 and flag-4 loci encode peritrichous flagellar systems while the flag-5 locus encodes a polar flagellum. In total, 798/4,028 (~ 20%) of the studied taxa incorporate dual flagellar systems, while nineteen taxa incorporate three distinct flagellar loci. Phylogenetic analyses indicate the complex evolutionary histories of the flagellar systems among the Enterobacterales. Conclusions Supernumerary flagellar loci are relatively common features across a broad taxonomic spectrum in the order Enterobacterales. Here, we report for the first time on the occurrence of two peritrichous flagellar loci in some enterobacterial taxa, as well as the occurrence of three flagellar systems in select members of the Enterobacterales. Considering the energetic burden of maintaining and operating multiple flagellar systems, they are likely to play a role in the ecological success of members of this family and we postulate on their potential biological functions.


2007 ◽  
Vol 51 (8) ◽  
pp. 3004-3007 ◽  
Author(s):  
Ying-Tsong Chen ◽  
Tsai-Ling Lauderdale ◽  
Tsai-Lien Liao ◽  
Yih-Ru Shiau ◽  
Hung-Yu Shu ◽  
...  

ABSTRACT A 269-kilobase conjugative plasmid, pK29, from a Klebsiella pneumoniae strain was sequenced. The plasmid harbors multiple antimicrobial resistance genes, including those encoding CMY-8 AmpC-type and CTX-M-3 extended-spectrum β-lactamases in the common backbone of IncHI2 plasmids. Mechanisms for dissemination of the resistance genes are highlighted in comparative genomic analyses.


2018 ◽  
Vol 9 ◽  
Author(s):  
Eleonora Mastrorilli ◽  
Daniele Pietrucci ◽  
Lisa Barco ◽  
Serena Ammendola ◽  
Sara Petrin ◽  
...  

2006 ◽  
Vol 188 (7) ◽  
pp. 2533-2542 ◽  
Author(s):  
Roger Frutos ◽  
Alain Viari ◽  
Conchita Ferraz ◽  
Anne Morgat ◽  
Sophie Eychenié ◽  
...  

ABSTRACT Ehrlichia ruminantium is the causative agent of heartwater, a major tick-borne disease of livestock in Africa that has been introduced in the Caribbean and is threatening to emerge and spread on the American mainland. We sequenced the complete genomes of two strains of E. ruminantium of differing phenotypes, strains Gardel (Erga; 1,499,920 bp), from the island of Guadeloupe, and Welgevonden (Erwe; 1,512,977 bp), originating in South Africa and maintained in Guadeloupe in a different cell environment. Comparative genomic analysis of these two strains was performed with the recently published parent strain of Erwe (Erwo) and other Rickettsiales (Anaplasma, Wolbachia, and Rickettsia spp.). Gene order is highly conserved between the E. ruminantium strains and with A. marginale. In contrast, there is very little conservation of gene order with members of the Rickettsiaceae. However, gene order may be locally conserved, as illustrated by the tuf operons. Eighteen truncated protein-encoding sequences (CDSs) differentiate Erga from Erwe/Erwo, whereas four other truncated CDSs differentiate Erwe from Erwo. Moreover, E. ruminantium displays the lowest coding ratio observed among bacteria due to unusually long intergenic regions. This is related to an active process of genome expansion/contraction targeted at tandem repeats in noncoding regions and based on the addition or removal of ca. 150-bp tandem units. This process seems to be specific to E. ruminantium and is not observed in the other Rickettsiales.


Gut Pathogens ◽  
2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Seung Woo Ahn ◽  
Se Hee Lee ◽  
Hong-Seok Son ◽  
Seong Woon Roh ◽  
Yoon-E Choi

Abstract Background Lentibacillus species are gram variable aerobic bacteria that live primarily in halophilic environments. Previous reports have shown that bacteria belonging to this species are primarily isolated from salty environments or food. We isolated a bacterial strain CBA3610, identified as a novel species of the genus Lentibacillus, from a human fecal sample. In this report, the whole genome sequence of Lentibacillus sp. CBA3610 is presented, and genomic analyses are performed. Results Complete genome sequence of strain CBA3610 was obtained through PacBio RSII and Illumina HiSeq platforms. The size of genome is 4,035,571 bp and genes estimated to be 4714 coding DNA sequences and 64 tRNA and 17 rRNA were identified. The phylogenetic analysis confirmed that it belongs to the genus Lentibacillus. In addition, there were genes related to antibiotic resistance and virulence, and genes predicted as CRISPR and prophage were also identified. Genes related to osmotic stress were found according to the characteristics of halophilic bacterium. Genomic differences from other Lentibacillus species were also confirmed through comparative genomic analysis. Conclusions Strain CBA3610 is predicted to be a novel candidate species of Lentibacillus through phylogenetic analysis and comparative genomic analysis with other species in the same genus. This strain has antibiotic resistance gene and pathogenic genes. In future, the information derived from the results of several genomic analyses of this strain is thought to be helpful in identifying the relationship between halophilic bacteria and human gut microbiota.


2021 ◽  
Author(s):  
Claudio Montenegro ◽  
Livia Martins ◽  
Fernanda de Oliveira Bustamante ◽  
Ana Christina Brasileiro-Vidal ◽  
Andrea Pedrosa-Harand

The tribe Phaseoleae (Leguminosae; Papilionoideae) includes several legume crops with assembled genomes. Comparative genomic studies indicated the preservation of large genomic blocks in legumes. However, the chromosome dynamics along its evolution was not investigated in the tribe. We conducted a comparative genomic analysis using CoGe Synmap platform to define a useful genomic block (GB) system and to reconstruct the ancestral Phaseoleae karyotype (APK). We defined the GBs based on orthologous genes between Phaseolus vulgaris and Vigna unguiculata genomes (n = 11), then searched for these GBs in different genome species belonging to the Phaseolinae (P. lunatus, n = 11) and Glycininae (Amphicarpaea edgeworthii, n = 11 and Spatholobus suberectus, n = 9) subtribes, and in the outgroup (Medicago truncaluta, n = 8). To support our in silico analysis, we used oligo-FISH probes of P. vulgaris chromosomes 2 and 3 to paint the orthologous chromosomes of the non-sequenced Phaseolinae species (Macroptilium atropurpureum and Lablab purpureusi, n = 11). We inferred the APK with n = 11, 22 GBs (A to V) and 60 sub-GBs. We hypothesized that the main rearrangements within Phaseolinae involved nine APK chromosomes, with extensive centromere repositioning resulting from evolutionary new centromeres (ENC) in the Phaseolus lineage. We demonstrated that the A. edgeworthii genome is more reshuffled than the dysploid S. suberectus genome, in which we could reconstructed the main events responsible for the chromosome number reduction. The development of the GB system and the proposed APK provide useful tools for future comparative genomic analyses of legume species.


2020 ◽  
Author(s):  
Benwen Liu ◽  
Yu Xin Hu ◽  
Zheng Yu Hu ◽  
Guo Xiang Liu ◽  
Huan Zhu

Abstract Background: Order Chaetophorales currently includes six families, namely Schizomeridaceae, Aphanochaetaceae, Barrancaceae, Uronemataceae, Fritschiellaceae, and Chaetophoraceae. The phylogenetic relationships of Chaetophorales have been inferred primarily based on short and less informative rDNA sequences. This study aimed to phylogenetically reconstruct order Chaetophorales and determine the taxonomic scheme and to further the current understanding of the evolution of order Chaetophorales.Results: In the present study, seven complete and five fragmentary chloroplast genomes were harvested. Phylogenomic and comparative genomic analysis were performed to determine the taxonomic scheme within Chaetophorales. Consequently, Oedogoniales was found to be a sister to a clade linking Chaetophorales and Chaetopeltidales. Schizomeriaceae, and Aphanochaetaceae clustered into a well-resolved basal clade in Chaetophorales, inconsistent with the results of phylogenetic analysis based on rDNA sequences. Comparative genomic analyses revealed that the chloroplast genomes of Schizomeriaceae and Aphanochaetaceae were highly conserved and homologous, highlighting the closest relationship in this order. Germination types of zoospores precisely correlated with the phylogenetic relationships.Conclusions: chloroplast genome structure analyses, synteny analyses, and zoospore germination analyses were concurrent with phylogenetic analyses based on the chloroplast genome, and all of them robustly determined the unique taxonomic scheme of Chaetophorales and the relationships of Oedogoniales, Chaetophorales, and Chaetopeltidales.


Sign in / Sign up

Export Citation Format

Share Document