scholarly journals Overexpressed lncRNA AC068039.4 contributes to proliferation and cell cycle progression of pulmonary artery smooth muscle cells via sponging miR-26a-5p/TRPC6 in hypoxic pulmonary arterial hypertension

2020 ◽  
Author(s):  
Yuhan Qin ◽  
Boqian Zhu ◽  
Linqing Li ◽  
Gaoliang Yan ◽  
Dong Wang ◽  
...  

Abstract Background: Hypoxic pulmonary hypertension (HPH) is a devastating and incurable disease characterized by pulmonary vascular remodeling, resulting to right heart failure and even death. Accumulated evidence has confirmed long coding RNAs (lncRNAs) are involved in hypoxia induced pulmonary vascular remodeling in HPH. The exact mechanism of lncRNA in hypoxic pulmonary hypertension remains unclear. Methods:Microarray analysis was applied to investigate the profiles of lncRNA expression in pulmonary artery smooth muscle cells (PASMCs) cultured under hypoxia and normoxia condition. qRT-PCR was performed for the expression of lncRNAs, miRNA and mRNAs, western blot analysis was employed for detection the expression of proteins. CCK-8 and transwell chamber assay were applied for assessment of PASMC proliferation and migration, respectively. Besides, flow cytometry was performed for assessments of cell cycle progression. The binding between AC068039.4 and miR-26a-5p, miR-26a-5p and TRPC6 3’UTR were detected by dual luciferase reporter assay.Results:A total of 1211 lncRNAs (698 up-regulated and 513 down-regulated) were differently expressed in hypoxia induced PASMCs. Consistent with microarray analysis, quantitative PCR verified that AC068039.4 was obviously up-regulated in hypoxia induced PASMCs. Knocking down AC068039.4 alleviated proliferation and migration of PASMCs and regulated cell cycle progression through inhibiting cells entering the G0/G1 cell cycle phase. Further experiment indicated AC068039.4 promoted hypoxic PASMCs proliferation via sponging miR-26-5p. In addition, transient receptor potential canonical 6 (TRPC6) was confirmed to be a target gene of miR-26a-5p. Conclusion: In conclusion, downregulation of lncRNA AC068039.4 inhibited pulmonary vascular remodeling through AC068039.4/miR-26a-5p/TRPC6 axis, providing new therapeutic insights for the treatment of HPH.

Hypertension ◽  
2020 ◽  
Vol 76 (4) ◽  
pp. 1124-1133 ◽  
Author(s):  
Ying Liu ◽  
Hongyue Zhang ◽  
Yiying Li ◽  
Lixin Yan ◽  
Wei Du ◽  
...  

Pulmonary hypertension (PH) is a rare and fatal disorder involving the vascular remodeling of pulmonary arteries mediated by the enhanced proliferation of pulmonary artery smooth muscle cells (PASMCs). Long noncoding RNAs are a subclass of regulatory molecules with diverse cellular functions, but their role in PH remains largely unexplored. We aimed to identify and determine the functions of long noncoding RNAs involved in hypoxia-induced PH and PASMC proliferation. RNA sequencing in a hypoxic mouse model identified hypoxia-regulated long noncoding RNAs, including Rps4l. Rps4l expression was significantly reduced in PH-model mice and hypoxic PASMCs. The subcellular localization of Rps4l was detected by RNA fluorescence in situ hybridization and quantification of nuclear/cytoplasmic RNA. Rps4l overexpression rescued pulmonary arterial hypertension features, as demonstrated by right ventricle hypertrophy, right ventricular systolic pressure, hemodynamics, cardiac function, and vascular remodeling. At the cellular level, Rps4l overexpression weakened cell viability and proliferation and suppressed cell cycle progression. Potential Rps4l-binding proteins were identified via RNA pull-down followed by mass spectrometry, RNA immunoprecipitation, and microscale thermophoresis. These results indicated that Rps4l is associated with and affects the stabilization of ILF3 (interleukin enhancer-binding factor 3). Rps41 further regulates the levels of HIF-1α and consequently leads to hypoxia-induced PASMC proliferation and migration. Our results showed that in hypoxic PASMCs, Rps4l expression decreases due to regulation by hypoxia. This decrease affects the proliferation, migration, and cell cycle progression of PASMCs through ILF3/HIF-1α. These results provide a theoretical basis for further investigations into the pathological mechanism of hypoxic PH and may provide insight for the development of novel treatments.


2015 ◽  
Vol 308 (2) ◽  
pp. L208-L220 ◽  
Author(s):  
Haiyang Tang ◽  
Jiwang Chen ◽  
Dustin R. Fraidenburg ◽  
Shanshan Song ◽  
Justin R. Sysol ◽  
...  

Pulmonary vascular remodeling, mainly attributable to enhanced pulmonary arterial smooth muscle cell proliferation and migration, is a major cause for elevated pulmonary vascular resistance and pulmonary arterial pressure in patients with pulmonary hypertension. The signaling cascade through Akt, comprised of three isoforms (Akt1–3) with distinct but overlapping functions, is involved in regulating cell proliferation and migration. This study aims to investigate whether the Akt/mammalian target of rapamycin (mTOR) pathway, and particularly which Akt isoform, contributes to the development and progression of pulmonary vascular remodeling in hypoxia-induced pulmonary hypertension (HPH). Compared with the wild-type littermates, Akt1 −/− mice were protected against the development and progression of chronic HPH, whereas Akt2 −/− mice did not demonstrate any significant protection against the development of HPH. Furthermore, pulmonary vascular remodeling was significantly attenuated in the Akt1 −/− mice, with no significant effect noted in the Akt2 −/− mice after chronic exposure to normobaric hypoxia (10% O2). Overexpression of the upstream repressor of Akt signaling, phosphatase and tensin homolog deleted on chromosome 10 (PTEN), and conditional and inducible knockout of mTOR in smooth muscle cells were also shown to attenuate the rise in right ventricular systolic pressure and the development of right ventricular hypertrophy. In conclusion, Akt isoforms appear to have a unique function within the pulmonary vasculature, with the Akt1 isoform having a dominant role in pulmonary vascular remodeling associated with HPH. The PTEN/Akt1/mTOR signaling pathway will continue to be a critical area of study in the pathogenesis of pulmonary hypertension, and specific Akt isoforms may help specify therapeutic targets for the treatment of pulmonary hypertension.


Author(s):  
Yanping Yang ◽  
Wenkai Mao ◽  
Liming Wang ◽  
Lin Lu ◽  
Yunfeng Pang

Atherosclerosis is a major cause of cardiovascular disease, in which vascular smooth muscle cells (VSMCs) proliferation and migration play a vital role. Circular RNAs (circRNAs) have been reported to be correlated with the VSMCs function. Therefore, this study is designed to explore the role and mechanism of circRNA lipase maturation factor 1 (circLMF1) in Human aortic VSMCs (HASMCs). The microarray was used for detecting the expression of circLMF1 in proliferative and quiescent HASMCs. Levels of circLMF1, microRNA-125a-3p (miR-125a-3p), vascular endothelial growth factor A (VEGFA), and fibroblast growth factor 1 (FGF1) were determined by real-time quantitative polymerase chain reaction (RT-qPCR). Cell viability, cell cycle progression, and migration were assessed by Cell Counting Kit-8 (CCK-8), flow cytometry, wound healing, and transwell assays, respectively. Western blot assay determined proliferating cell nuclear antigen (PCNA), Cyclin D1, matrix metalloproteinase (MMP2), osteopontin (OPN), VEGFA, and FGF1 protein levels. The possible interactions between miR-125a-3p and circLMF1, and miR-125a-3p and VEGFA or FGF1 were predicted by circbank or targetscan, and then verified by a dual-luciferase reporter, RNA Immunoprecipitation (RIP), RNA pull-down assays. CircLMF1, VEGFA, and FGF1 were increased, and miR-125a-3p was decreased in platelet-derived growth factor-BB (PDGF-BB)-inducted HASMCs. Functionally, circLMF1 knockdown hindered cell viability, cell cycle progression, and migration in PDGF-BB-treated HASMCs. Mechanically, circLMF1 could regulate VEGFA or FGF1 expression through sponging miR-125a-3p. Our findings revealed that circLMF1 deficiency could inhibit cell viability, cell cycle progression, and migration of PDGF-BB stimulated atherosclerosis model partly through the miR-125a-3p/VEGFA or FGF1 axis, suggesting that targeting circLMF1 can be a feasible therapeutic strategy for atherosclerosis.


Endocrinology ◽  
2010 ◽  
Vol 152 (2) ◽  
pp. 651-658 ◽  
Author(s):  
Daniel James Lightell ◽  
Stephanie Collier Moss ◽  
Thomas Cooper Woods

Abstract Insulin resistance is associated with an accelerated rate of atherosclerosis. Vascular smooth muscle cell (VSMC) migration and proliferation are important components of atherosclerosis. To elucidate the effects of the loss of normal insulin receptor (IR) signaling on VSMC function, we compared the proliferation and migration of murine VSMCs lacking the IR (L2-VSMCs) with wild type (WT-VSMCs). We also examined changes in the response of L2-VSMCs to insulin stimulation and to inhibition of the mammalian target of rapamycin (mTOR), a kinase critical in VSMC proliferation and migration. The L2-VSMCs exhibit greater proliferation and migration rates compared with WT-VSMCs. L2-VSMCs also exhibit a resistance to the effects of rapamycin, an mTOR inhibitor, on proliferation, migration, and cell cycle progression. The resistance to mTOR inhibition is coupled with a loss of effect on the cyclin-dependent kinase inhibitor p27Kip1, an inhibitor of cell cycle progression and VSMC migration. In response to stimulation with physiological insulin, the L2-VSMCs exhibit a loss of Akt phosphorylation and a significantly increased activation of the ERK-1/2 compared with WT-VSMCs. Insulin stimulation also decreased p27Kip1 mRNA in L2-VSMCs but not in WT-VSMCs. The effect of insulin on p27Kip1 mRNA was blocked by pretreatment with an ERK-1/2 pathway inhibitor. We conclude that loss of canonical insulin signaling results in increased ERK-1/2 activation in response to physiological insulin that decreases p27Kip1 mRNA. These data demonstrate a potential mechanism where changes in IR signaling could lead to a decrease in p27Kip1, accelerating VSMC proliferation and migration.


2017 ◽  
Vol 42 (6) ◽  
pp. 2569-2581 ◽  
Author(s):  
Zengxian Sun ◽  
Xiaowei Nie ◽  
Shuyang Sun ◽  
Shumin Dong ◽  
Chunluan Yuan ◽  
...  

Background/Aims: Increasing evidence has demonstrated a significant role of long non-coding RNAs (lncRNAs) in diverse biological processes, and many of which are likely to have functional roles in vascular remodeling. However, their functions in pulmonary arterial hypertension (PAH) remain largely unknown. Pulmonary vascular remodeling is an important pathological feature of PAH, leading to increased vascular resistance and reduced compliance. Pulmonary artery smooth muscle cells (PASMCs) dysfunction is involved in vascular remodeling. Long noncoding RNAs are potential regulators of PASMCs function. Herein, we determined whether long noncoding RNA–maternally expressed gene 3 (MEG3) was involved in PAH-related vascular remodeling. Methods: The arterial wall thickness was examined by hematoxylin and eosin (H&E) staining in distal pulmonary arteries (PAs) isolated from lungs of healthy volunteers and PAH patients. The expression level of MEG3 was analyzed by qPCR. The effects of MEG3 on human PASMCs were assessed by cell counting Kit-8 assay, BrdU incorporation assay, flow cytometry, scratch-wound assay, immunofluorescence, and western blotting in human PASMCs. Results: We revealed that the expression of MEG3 was significantly downregulated in lung and PAs of patients with PAH. MEG3 knockdown affected PASMCs proliferation and migration in vitro. Moreover, inhibition of MEG3 regulated the cell cycle progression and made more smooth muscle cells from the G0/G1 phase to the G2/M+S phase and the process could stimulate the expression of PCNA, Cyclin A and Cyclin E. In addition, we found that the p53 pathway was involved in MEG3–induced smooth muscle cell proliferation. Conclusions: This study identified MEG3 as a critical regulator in PAH and demonstrated the potential of gene therapy and drug development for treating PAH.


2004 ◽  
Vol 287 (5) ◽  
pp. C1273-C1281 ◽  
Author(s):  
Louis Ragolia ◽  
Thomas Palaia ◽  
Tara B. Koutrouby ◽  
John K. Maesaka

The regulation of vascular smooth muscle cell (VSMC) proliferation, migration, and apoptosis plays a clear role in the atherosclerotic process. Recently, we reported on the inhibition of the exaggerated growth phenotype of VSMCs isolated from hypertensive rats by lipocalin-type prostaglandin D2 synthase (L-PGDS). In the present study, we report the differential effects of L-PGDS on VSMC cell cycle progression, migration, and apoptosis in wild-type VSMCs vs. those from a type 2 diabetic model. In wild-type VSMCs, exogenously added L-PGDS delayed serum-induced cell cycle progression from the G1 to S phase, as determined by gene array analysis and the decreased protein expressions of cyclin-dependent kinase-2, p21Cip1, and cyclin D1. Cyclin D3 protein expression was unaffected by L-PGDS, although its gene expression was stimulated by L-PGDS in wild-type cells. In addition, platelet-derived growth factor-induced VSMC migration was inhibited by L-PGDS in wild-type cells. Type 2 diabetic VSMCs, however, were resistant to the L-PGDS effects on cell cycle progression and migration. L-PGDS did suppress the hyperproliferation of diabetic cells, albeit through a different mechanism, presumably involving the 2.5-fold increase in apoptosis and the concomitant 10-fold increase of L-PGDS uptake we observed in these cells. We propose that in wild-type VSMCs, L-PGDS retards cell cycle progression and migration, precluding hyperplasia of the tunica media, and that diabetic cells appear resistant to the inhibitory effects of L-PGDS, which consequently may help explain the increased atherosclerosis observed in diabetes.


2012 ◽  
Vol 302 (12) ◽  
pp. L1273-L1279 ◽  
Author(s):  
Lin Wei ◽  
Rod R. Warburton ◽  
Ioana R. Preston ◽  
Kari E. Roberts ◽  
Suzy A. A. Comhair ◽  
...  

Serotonin (5-HT) and fibronectin (FN) have been associated with pulmonary hypertension (PH). We previously reported that FN is posttranslationally modified by tissue transglutaminase (TGase) to form serotonylated FN (s-FN) in pulmonary artery smooth muscle cells and that serotonylation stimulates their proliferation and migration, hallmarks of PH. We hypothesized that s-FN and its binding to TGase are elevated in human and experimental PH. To assess this hypothesis, FN isolation and electrophoretic, immunoblotting, and densitometric techniques were used. Mean ratio of serum s-FN to total FN level (s-FN/FN) was elevated in 19 consecutive pulmonary arterial hypertension (PAH) patients compared with 25 controls (0.3 ± 0.18 vs. 0.05 ± 0.07, P < 0.001). s-FN/FN also was increased in lungs of mice and rats with hypoxia-induced PH and in rats with monocrotaline-induced PH. In mice, the increase was detected at 1 wk of hypoxia, preceding the development of PH. Hypoxic rats had elevated serum s-FN/FN. Enhanced binding of TGase to its substrate FN occurred in serum from patients with PAH (mean 0.50 ± 0.51 vs. 0.063 ± 0.11, P = 0.002) and s-FN/FN and TGase-bound FN were highly correlated ( R2 = 0.77). TGase-bound FN also was increased in experimental PH. We conclude that increased serotonylation of FN occurs in human and experimental PH and may provide a biomarker for the disease.


2021 ◽  
Vol 12 ◽  
Author(s):  
Ai-Ping Wang ◽  
Fang Yang ◽  
Ying Tian ◽  
Jian-Hui Su ◽  
Qing Gu ◽  
...  

Pulmonary hypertension (PH) is a critical and dangerous disease in cardiovascular system. Pulmonary vascular remodeling is an important pathophysiological mechanism for the development of pulmonary arterial hypertension. Pulmonary artery smooth muscle cell (PASMC) proliferation, hypertrophy, and enhancing secretory activity are the main causes of pulmonary vascular remodeling. Previous studies have proven that various active substances and inflammatory factors, such as interleukin 6 (IL-6), IL-8, chemotactic factor for monocyte 1, etc., are involved in pulmonary vascular remodeling in PH. However, the underlying mechanisms of these active substances to promote the PASMC proliferation remain to be elucidated. In our study, we demonstrated that PASMC senescence, as a physiopathologic mechanism, played an essential role in hypoxia-induced PASMC proliferation. In the progression of PH, senescence PASMCs could contribute to PASMC proliferation via increasing the expression of paracrine IL-6 (senescence-associated secretory phenotype). In addition, we found that activated mTOR/S6K1 pathway can promote PASMC senescence and elevate hypoxia-induced PASMC proliferation. Further study revealed that the activation of mTOR/S6K1 pathway was responsible for senescence PASMCs inducing PASMC proliferation via paracrine IL-6. Targeted inhibition of PASMC senescence could effectively suppress PASMC proliferation and relieve pulmonary vascular remodeling in PH, indicating a potential for the exploration of novel anti-PH strategies.


Sign in / Sign up

Export Citation Format

Share Document