An Auction Based Task Dispatching and Pricing Mechanism in Bike-sharing

Author(s):  
Bing Shi ◽  
Yaping Deng ◽  
Han Yuan

Abstract As a green and low-carbon transportation way, bike-sharing provides lots of convenience in the daily life. However, the daily usage of sharing bikes results in dispatching problems, i.e. dispatching bikes to the specific destinations. The bike-sharing platform can hire and pay to workers in order to incentivize them to accomplish the dispatching tasks. However, there exist multiple workers competing for the dispatching tasks, and they may strategically report their task accomplishing costs (which are private information only known by themselves) in order to make more profits, which may result in inefficient task dispatching results. In this paper, we first design a dispatching algorithm named GDY-MAX to allocate tasks to workers, which can achieve good performance. However it cannot prevent workers strategically misreporting their task accomplishing costs. Regarding this issue, we further design a strategy proof mechanism under the budget constraint, which consists of a task dispatching algorithm and a worker pricing algorithm. We theoretically prove that our mechanism can satisfy the properties of incentive compatibility, individual rationality and budget balance. Furthermore we run extensive experiments to evaluate our mechanism based on a dataset from Mobike. The results show that the performance of the proposed strategy proof mechanism and GDY-MAX is similar to the optimal algorithm in terms of the coverage ratio of accomplished task regions and the sum of task region values, and our mechanism has better performance than the uniform algorithm in terms of the total payment and the unit cost value.

2021 ◽  
Vol 13 (1) ◽  
pp. 116-147
Author(s):  
James Schummer ◽  
Rodrigo A. Velez

Strategy-proof allocation rules incentivize truthfulness in simultaneous move games, but real world mechanisms sometimes elicit preferences sequentially. Surprisingly, even when the underlying rule is strategy-proof and nonbossy, sequential elicitation can yield equilibria where agents have a strict incentive to be untruthful. This occurs only under incomplete information, when an agent anticipates that truthful reporting would signal false private information about others’ preferences. We provide conditions ruling out this phenomenon, guaranteeing all equilibrium outcomes to be welfare-equivalent to truthful ones. (JEL C73, D45, D82, D83)


Author(s):  
Hiroshi Hirai ◽  
Ryosuke Sato

In this paper, we present a new model and mechanisms for auctions in two-sided markets of buyers and sellers, where budget constraints are imposed on buyers. Our model incorporates polymatroidal environments and is applicable to a variety of models that include multiunit auctions, matching markets, and reservation exchange markets. Our mechanisms are built on the polymatroidal network flow model by Lawler and Martel. Additionally, they feature nice properties such as the incentive compatibility of buyers, individual rationality, Pareto optimality, and strong budget balance. The first mechanism is a two-sided generalization of the polyhedral clinching auction by Goel et al. for one-sided markets. The second mechanism is a reduce-to-recover algorithm that reduces the market to be one-sided, applies the polyhedral clinching auction by Goel et al., and lifts the resulting allocation to the original two-sided market via the polymatroidal network flow. Both mechanisms are implemented by polymatroid algorithms. We demonstrate how our framework is applied to the Internet display advertisement auctions.


Author(s):  
Qinpeng Wang ◽  
Longfei He

Information concerning carbon reduction efficiency is of great significance to supply chain operations. Considering the impact of information asymmetry on the performance of low-carbon supply chain, we therefore analyze a chain system with a single product designer and a single manufacturer. The manufacturer owns information on carbon reduction efficiency, whereas the product designer only knows that the carbon reduction efficiency of the manufacturer is either high or low. To induce the manufacturer to reveal his true private information of carbon-reduction efficiency to the product designer, we devise the pooling and separating equilibrium models to compare the impacts of these two models on supply chain performance, respectively. We find that the high-efficiency manufacturer gets his first-best choice at the equilibrium decision in the separating model, and obtains the information rent in the pooling model. The information rent increases in the efficiency difference between the two emission-reduction types. Additionally, we examine how the probability of the high (or low)-efficiency manufacturer being chosen impacts on both the profits of chain members and carbon-reduction levels. The research provides a reference for companies about how to cooperate with partner who possess private information of carbon emissions.


2020 ◽  
Vol 15 (1) ◽  
pp. 361-413 ◽  
Author(s):  
Brian Baisa

I study multiunit auction design when bidders have private values, multiunit demands, and non‐quasilinear preferences. Without quasilinearity, the Vickrey auction loses its desired incentive and efficiency properties. I give conditions under which we can design a mechanism that retains the Vickrey auction's desirable incentive and efficiency properties: (1) individual rationality, (2) dominant strategy incentive compatibility, and (3) Pareto efficiency. I show that there is a mechanism that retains the desired properties of the Vickrey auction if there are two bidders who have single‐dimensional types. I also present an impossibility theorem that shows that there is no mechanism that satisfies Vickrey's desired properties and weak budget balance when bidders have multidimensional types.


Author(s):  
Avinatan Hassidim ◽  
Assaf Romm ◽  
Ran I. Shorrer

Organizations often require agents’ private information to achieve critical goals such as efficiency or revenue maximization, but frequently it is not in the agents’ best interest to reveal this information. Strategy-proof mechanisms give agents incentives to truthfully report their private information. In the context of matching markets, they eliminate agents’ incentives to misrepresent their preferences. We present direct field evidence of preference misrepresentation under the strategy-proof deferred acceptance in a high-stakes matching environment. We show that applicants to graduate programs in psychology in Israel often report that they prefer to avoid receiving funding, even though the mechanism preserves privacy and funding comes with no strings attached and constitutes a positive signal of ability. Surveys indicate that other kinds of preference misrepresentation are also prevalent. Preference misrepresentation in the field is associated with weaker applicants. Our findings have important implications for practitioners designing matching procedures and for researchers who study them. This paper was accepted by Axel Ockenfels, decision analysis.


Author(s):  
John Wamburu ◽  
Stephen Lee ◽  
Mohammad H. Hajiesmaili ◽  
David Irwin ◽  
Prashant Shenoy

While ride-sharing has emerged as a popular form of transportation in urban areas due to its on-demand convenience, it has become a major contributor to carbon emissions, with recent studies suggesting it is 47% more carbon-intensive than personal car trips. In this paper, we examine the feasibility, costs, and carbon benefits of using electric bike-sharing---a low carbon form of ride-sharing---as a potential substitute for shorter ride-sharing trips, with the overall goal of greening the ride-sharing ecosystem. Using public datasets from New York City, our analysis shows that nearly half of the taxi and rideshare trips in New York are shorts trips of less than 3.5km, and that biking is actually faster than using a car for ultra-short trips of 2km or less. We analyze the cost and carbon benefits of different levels of ride substitution under various scenarios. We find that the additional bikes required to satisfy increased demand from ride substitution increases sub-linearly and results in 6.6% carbon emission reduction for 10% taxi ride substitution. Moreover, this reduction can be achieved through a hybrid mix that requires only a quarter of the bikes to be electric bikes, which reduces system costs. We also find that expanding bike-share systems to new areas that lack bike-share coverage requires additional investments due to the need for new bike stations and bike capacity to satisfy demand but also provides substantial carbon emission reductions. Finally, frequent station repositioning can reduce the number of bikes needed in the system by up to a third for a minimal increase in carbon emissions of 2% from the trucks required to perform repositioning, providing an interesting tradeoff between capital costs and carbon emissions.


2021 ◽  
Vol 13 (24) ◽  
pp. 13588
Author(s):  
Fayez Nasir Al-Rowaili ◽  
Siddig S. Khalafalla ◽  
Aqil Jamal ◽  
Dhaffer S. Al-Yami ◽  
Umer Zahid ◽  
...  

The continuous rise of global carbon emissions demands the utilization of fossil fuels in a sustainable way. Owing to various forms of emissions, our environment conditions might be affected, necessitating more focus of scientists and researchers to upgrade oil processing to more efficient manner. Gasification is a potential technology that can convert fossil fuels to produce clean and environmentally friendly hydrogen fuel in an economical manner. Therefore, this study analyzed and examined it critically. In this study, two different routes for the produc-tion of high-purity hydrogen from vacuum residue while minimizing the carbon emissions were proposed. The first route (Case I) studied the gasification of heavy vacuum residue (VR) in series with dry methane reforming (DMR). The second route studied the gasification of VR in parallel integration with DMR (Case II). After investigating both processes, a brief comparison was made between the two routes of hydrogen production in terms of their CO2 emissions, en-ergy efficiency, energy consumption, and environmental and economic impacts. In this study, the two vacuum-residue-to-hydrogen (VRTH) processes were simulated using Aspen Plus for a hydrogen production capacity of 50 t/h with 99.9 wt.% purity. The results showed that Case II offered a process energy efficiency of 57.8%, which was slightly higher than that of Case I. The unit cost of the hydrogen product for Case II was USD 15.95 per metric ton of hydrogen, which was almost 9% lower than that of Case I. In terms of the environmental analysis, both cases had comparably low carbon emissions of around 8.3 kg of CO2/kg of hydrogen produced; with such high purity, the hydrogen could be used for production of other products further downstream or for industrial applications.


2021 ◽  
Vol 16 (3) ◽  
pp. 943-978
Author(s):  
Simon Loertscher ◽  
Claudio Mezzetti

The price mechanism is fundamental to economics but difficult to reconcile with incentive compatibility and individual rationality. We introduce a double clock auction for a homogeneous good market with multidimensional private information and multiunit traders that is deficit‐free, ex post individually rational, constrained efficient, and makes sincere bidding a dominant strategy equilibrium. Under a weak dependence and an identifiability condition, our double clock auction is also asymptotically efficient. Asymptotic efficiency is achieved by estimating demand and supply using information from the bids of traders that have dropped out and following a tâtonnement process that adjusts the clock prices based on the estimates.


Sign in / Sign up

Export Citation Format

Share Document