scholarly journals Techno-Economic Evaluation of Hydrogen Production via Gasification of Vacuum Residue Integrated with Dry Methane Reforming

2021 ◽  
Vol 13 (24) ◽  
pp. 13588
Author(s):  
Fayez Nasir Al-Rowaili ◽  
Siddig S. Khalafalla ◽  
Aqil Jamal ◽  
Dhaffer S. Al-Yami ◽  
Umer Zahid ◽  
...  

The continuous rise of global carbon emissions demands the utilization of fossil fuels in a sustainable way. Owing to various forms of emissions, our environment conditions might be affected, necessitating more focus of scientists and researchers to upgrade oil processing to more efficient manner. Gasification is a potential technology that can convert fossil fuels to produce clean and environmentally friendly hydrogen fuel in an economical manner. Therefore, this study analyzed and examined it critically. In this study, two different routes for the produc-tion of high-purity hydrogen from vacuum residue while minimizing the carbon emissions were proposed. The first route (Case I) studied the gasification of heavy vacuum residue (VR) in series with dry methane reforming (DMR). The second route studied the gasification of VR in parallel integration with DMR (Case II). After investigating both processes, a brief comparison was made between the two routes of hydrogen production in terms of their CO2 emissions, en-ergy efficiency, energy consumption, and environmental and economic impacts. In this study, the two vacuum-residue-to-hydrogen (VRTH) processes were simulated using Aspen Plus for a hydrogen production capacity of 50 t/h with 99.9 wt.% purity. The results showed that Case II offered a process energy efficiency of 57.8%, which was slightly higher than that of Case I. The unit cost of the hydrogen product for Case II was USD 15.95 per metric ton of hydrogen, which was almost 9% lower than that of Case I. In terms of the environmental analysis, both cases had comparably low carbon emissions of around 8.3 kg of CO2/kg of hydrogen produced; with such high purity, the hydrogen could be used for production of other products further downstream or for industrial applications.

Author(s):  
M. Gambini ◽  
M. Vellini

In this paper two options for H2 production by means of fossil fuels are presented, evaluating their performance when integrated with advanced H2/air cycles. The investigation has been developed with reference to two different schemes, representative both of consolidated technology (combined cycle power plants) and of innovative technology (a new advance mixed cycle, named AMC). The two methods, here considered, to produce H2 are: • coal gasification: it permits transformation of a solid fuel into a gaseous one, by means of partial combustion reactions; • steam-methane reforming: it is the simplest and potentially the most economic method for producing hydrogen in the foreseeable future. These hydrogen production plants require material and energy integrations with the power section, and the best connections must be investigated in order to obtain good overall performance. The main results of the performed investigation are quite variable among the different H2 production options here considered: for example the efficiency value is over 34% for power plants coupled with coal decarbonization system, while it is in a range of 45–48% for power plants coupled with natural gas decarbonization. These differences are similar to those attainable by advanced combined cycle power plants fuelled by natural gas (traditional CC) and coal (IGCC). In other words, the decarbonization of different fossil fuels involves the same efficiency penalty related to the use of different fossil fuel in advanced cycle power plants (from CC to IGCC for example). The CO2 specific emissions depend on the fossil fuel type and the overall efficiency: adopting a removal efficiency of 90% in the CO2 absorption systems, the CO2 emission reduction is 87% and 82% in the coal gasification and in the steam-methane reforming respectively.


2016 ◽  
Vol 4 (1) ◽  
pp. 113-123 ◽  
Author(s):  
Q. Imtiaz ◽  
N. S. Yüzbasi ◽  
P. M. Abdala ◽  
A. M. Kierzkowska ◽  
W. van Beek ◽  
...  

The commercially dominating technology for hydrogen production (i.e. steam methane reforming) emits large quantities of CO2 into the atmosphere. On the other hand, thermochemical water-splitting cycles allow to produce high purity H2 while simultaneously capturing CO2.


2020 ◽  
Author(s):  
Christian Mikovits ◽  
Elisabeth Wetterlund ◽  
Johann Baumgartner ◽  
Sebastian Wehrle ◽  
Johannes Schmidt

Hydrogen produced from renewable electricity can play an important role in deep decarbonization of industry, such as primary steel-making. However, adding large electrolyzer capacities to a low-carbon electricity system also increases the need for additional renewable electricity generation which will mostly come from variable renewable energies (VRE). This will require hydrogen production to be variable, unless sufficient flexibility is provided by other sources. Existing sources of flexibility in hydro-thermal systems are (a) hydropower and (b) thermal generation. However, increasing the flexibility of hydropower generation may have negative consequences for river ecosystems and the use of fossil and non-fossil fuels in generation may increase if thermal power is increasingly used to balance short-falls in wind power during electrolyzer operation. We assess here for our Swedish case study the utilization of electrolyzers with a dispatch model, assuming that additional VRE generation matches the additional electricity demand of hydrogen production on average. The flexibility of hydropower and thermal generation is restricted in four scenarios, and we run our model for 29 different weather years to test the impact of variable weather regimes. We show that (a) in all scenarios, electrolyzer utilization is above 60% on average, (b) the inter-annual variability of hydrogen production is very high if thermal power is not dispatched for electrolysis, (c) this problem is aggravated if hydropower flexibility is also restricted, and therefore (d) either long-term storage of hydrogen, backup hydrogen sources, or additional flexibility measures may be necessary to guarantee continuous hydrogen flows, and (e) adding wind power and electrolysis decreases the need for other backup flexibility measures in the system during climatic extreme events.


2021 ◽  
Vol 2048 (1) ◽  
pp. 012004
Author(s):  
B Chmielarz ◽  
A Bredimas ◽  
C Herpson

Abstract The paper analyses Polish industrial energy market requirements and the economic boundary conditions of for High Temperature Reactor (HTR)-based hybrid energy systems for electricity, heat, and hydrogen production. The Polish industry suffers from high imported gas prices and high dependence on domestic coal sector. Most industrial coal boilers are ageing and will need replacement within two decades. Increasing emission prices will soon cripple the profitability of coal in favour of natural gas and leave an opening for HTRs. HTRs can be competitive for both heat and electricity generation if used at load factors above 90% and constructed within budget and on time. The competitiveness of HTRs grows further with rising fossil fuels and CO2 emission prices. For industrial hydrogen, steam methane reforming (SMR) is competitive against any other alternative. Large-scale hydrogen production with HTR-based Sulphur Iodine cycle may compete with SMR if capital and operational costs can be decreased. High temperature steam electrolysis requires more durable materials and lower capital cost. Electrolysis, given its relatively low CAPEX and scalability, can be competitive when electricity is cheap as a result of over-production from intermittent power capacities. Other fossil-based hydrogen production methods appear more costly and CO2-intensive than SMR. The study was done as a part of the GEMINI+ project.


2015 ◽  
Vol 8 (1) ◽  
pp. 229-232
Author(s):  
Hailong Chen

As to the global warming, China has confidence in the development of the economy by bearing responsibility and obligation toward curbing global warming, which at this time can be achieved by reducing carbon emissions. Industry is an important material production department in the national economy, and plays a leading role in the national economy. Chinese industrial production is mainly based on the consumption of fossil fuels, resulting in a large amount of CO2 emission. Therefore, how to find a way to predict the discharge of CO2 by computer technology and make people realize the importance of low carbon development at industrial level is the focus of this study.


2020 ◽  
Vol 13 (1) ◽  
pp. 192
Author(s):  
Jialin Liu ◽  
Yi Zhu ◽  
Qun Zhang ◽  
Fangyan Cheng ◽  
Xi Hu ◽  
...  

Since the late 1990s, the Yangtze River Delta (YRD) has experienced profound growth in economic scales and urban size. However, it is still unclear how much energy is consumed from both fossil fuel and electricity usage for transportation sectors (TCO2). We take 10 sampled cities in the YRD as examples and examine their city-level sustainable levels from 1990 to 2018. Then, we observed that SHSN (Shanghai, Suzhou, Nanjing) are in leading positions, followed by WCN (Wuxi, Changzhou, Ningbo) and NXH (Nantong, Xuzhou, Hefei). We found that the cumulative TCO2 in SHSN from 1990 to 2018 is the highest among groups, which is mainly due to the earlier industrialization in history. In 2018, SHSN had the highest TCO2 (623.9 × 104 t), WCN was 311.9 × 104 t, and NXH was 166.4 × 104 t. TCO2 per capita in SHSN reached its minimal (≈0.12 t) in 2018 among 29 years, while WCN and NXH shared the same levels (≈0.07 t). This could be attributed to the dense population and a series of low carbon policies announced in SHSN and WCN. NXH is still in the stage of high demands on economic-centered development. The primary source for TCO2 in the YRD is fossil fuels. The TCO2 contributed by transportation electricity usage is continually increasing, especially after 2010. This phenomenon represents that electricity can be a significant part of the YRD’s transportation sectors’ energy consumption shortly. A complex estimation model uncovers the complexity between the economy, environment, and carbon emissions in the YRD, which indicated that the decrease of TCO2 in YRD could not be regulated solely by economic or environmental interventions. This study highlighted the urgency for socio-economic adjustments from carbonized to decarbonized structures in the YRD.


Sign in / Sign up

Export Citation Format

Share Document