scholarly journals NEMPD: A network embedding-based method for predicting miRNA-disease associations by preserving behavior and attribute information

2020 ◽  
Author(s):  
Bo-Ya Ji ◽  
Zhu-Hong You ◽  
Zhan-Heng Chen ◽  
Leon Wong ◽  
Hai-Cheng Yi

Abstract Background: As an important non-coding RNA, microRNA (miRNA) plays a significant role in a series of life processes and is closely associated with a variety of Human diseases. Hence, identification of potential miRNA-disease associations can make great contributions to the research and treatment of Human diseases. However, to our knowledge, many existing computational methods only utilize the single type of known association information between miRNAs and diseases to predict their potential associations, without focusing on their interactions or associations with other types of molecules. Results: In this paper, we propose a network embedding-based method for predicting miRNA-disease associations by preserving behavior and attribute information. Firstly, a heterogeneous network is constructed by integrating known associations among miRNA, protein and disease, and the network representation method Learning Graph Representations with Global Structural Information (GraRep) is implemented to learn the behavior information of miRNAs and diseases in the network. Then, the behavior information of miRNAs and diseases is combined with the attribute information of them to represent miRNA-disease association pairs. Finally, the prediction model is established based on the Random Forest algorithm. Under the five-fold cross validation, the proposed NEMPD model obtained average 85.41% prediction accuracy with 80.96% sensitivity at the AUC of 91.58%. Furthermore, the performance of NEMPD is also validated by the case studies. Among the top 50 predicted disease-related miRNAs, 48 (breast neoplasms), 47 (colon neoplasms), 47 (lung neoplasms) were confirmed by two other databases.Conclusions: The proposed NEMPD model has a good performance in predicting the potential associations between miRNAs and diseases, and has great potency in the field of miRNA-disease association prediction in the future.

2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Bo-Ya Ji ◽  
Zhu-Hong You ◽  
Zhan-Heng Chen ◽  
Leon Wong ◽  
Hai-Cheng Yi

Abstract Background As an important non-coding RNA, microRNA (miRNA) plays a significant role in a series of life processes and is closely associated with a variety of Human diseases. Hence, identification of potential miRNA-disease associations can make great contributions to the research and treatment of Human diseases. However, to our knowledge, many existing computational methods only utilize the single type of known association information between miRNAs and diseases to predict their potential associations, without focusing on their interactions or associations with other types of molecules. Results In this paper, we propose a network embedding-based method for predicting miRNA-disease associations by preserving behavior and attribute information. Firstly, a heterogeneous network is constructed by integrating known associations among miRNA, protein and disease, and the network representation method Learning Graph Representations with Global Structural Information (GraRep) is implemented to learn the behavior information of miRNAs and diseases in the network. Then, the behavior information of miRNAs and diseases is combined with the attribute information of them to represent miRNA-disease association pairs. Finally, the prediction model is established based on the Random Forest algorithm. Under the five-fold cross validation, the proposed NEMPD model obtained average 85.41% prediction accuracy with 80.96% sensitivity at the AUC of 91.58%. Furthermore, the performance of NEMPD is also validated by the case studies. Among the top 50 predicted disease-related miRNAs, 48 (breast neoplasms), 47 (colon neoplasms), 47 (lung neoplasms) were confirmed by two other databases. Conclusions The proposed NEMPD model has a good performance in predicting the potential associations between miRNAs and diseases, and has great potency in the field of miRNA-disease association prediction in the future.


2020 ◽  
Author(s):  
Bo-Ya Ji ◽  
Zhu-Hong You ◽  
Zhan-Heng Chen ◽  
Leon Wong ◽  
Hai-Cheng Yi

Abstract Background As an important non-coding RNA newly discovered in recent years, MicroRNA (miRNA) plays an important role in a series of life processes and is closely associated with a variety of human diseases. Hence, the identification of potential miRNA-disease associations can make great contributions to the research and treatment of human diseases. However, to our knowledge, many of the existing state-of-the-art computational methods only utilize the single type of known association information between miRNAs and diseases to predict their potential associations, without focusing on their interactions or associations with other types of molecules. Results In this paper, a network embedding-based the tripartite miRNA-protein-disease network (NEMPD) method was proposed for the prediction of miRNA-disease associations. Firstly, a tripartite miRNA-protein-disease network is created by integrating known miRNA-protein and protein-disease associations. Then, we utilize the network representation method-Learning Graph Representations with Global Structural Information (GraRep) to obtain the behavior information (associations with proteins in the network) of miRNAs and diseases. Secondly, the behavior information of miRNAs and diseases is combined with the attribute information of them (disease semantic similarity and miRNA sequence information) to represent miRNA-disease pairs. Thirdly, the prediction model was established based on these known miRNA-disease pairs and the Random Forest algorithm. In the results, under five-fold cross validation, the average prediction accuracy, sensitivity, and AUC of NEMPD is 85.41%, 80.96%, and 91.58%. Furthermore, the performance of NEMPD was also validated by the case studies. Among the top 50 predicted disease-related miRNAs, 48 (breast neoplasms), 47 (colon neoplasms), 47 (lung neoplasms) were confirmed by two other databases. Conclusions NEMPD has a good performance in predicting the potential associations between miRNAs and diseases and has great potency in the field of miRNA-disease association prediction in the future.


2020 ◽  
Author(s):  
Bo-Ya Ji ◽  
Zhu-Hong You ◽  
Zhan-Heng Chen ◽  
Leon Wong ◽  
Hai-Cheng Yi

Abstract Background: As an important non-coding RNA newly discovered in recent years, MicroRNA (miRNA) plays an important role in a series of life processes and is closely associated with a variety of human diseases. Hence, the identification of potential miRNA-disease associations can make great contributions to the research and treatment of human diseases. However, to our knowledge, many of the existing state-of-the-art computational methods only utilize the single type of known association information between miRNAs and diseases to predict their potential associations, without focusing on their interactions or associations with other types of molecules.Results: In this paper, a network embedding-based the tripartite miRNA-protein-disease network (NEMPD) method was proposed for the prediction of miRNA-disease associations. Firstly, a tripartite miRNA-protein-disease network is created by integrating known miRNA-protein and protein-disease associations. Then, we utilize the network representation method-Learning Graph Representations with Global Structural Information (GraRep) to obtain the behavior information (associations with proteins in the network) of miRNAs and diseases. Secondly, the behavior information of miRNAs and diseases is combined with the attribute information of them (disease semantic similarity and miRNA sequence information) to represent miRNA-disease pairs. Thirdly, the prediction model was established based on these known miRNA-disease pairs and the Random Forest algorithm. In the results, under five-fold cross validation, the prediction accuracy, sensitivity, and AUC of NEMPD is 85.41%, 80.96%, and 91.58%. Furthermore, the performance of NEMPD was also validated by the case studies. Among the top 50 predicted disease-related miRNAs, 48 (breast neoplasms), 47 (colon neoplasms), 47 (lung neoplasms) were confirmed by two other databases.Conclusions: NEMPD has a good performance in predicting the potential associations between miRNAs and diseases and has great potency in the field of miRNA-disease association prediction in the future.


Author(s):  
Wei Peng ◽  
Jielin Du ◽  
Wei Dai ◽  
Wei Lan

MicroRNAs (miRNAs) are a category of small non-coding RNAs that profoundly impact various biological processes related to human disease. Inferring the potential miRNA-disease associations benefits the study of human diseases, such as disease prevention, disease diagnosis, and drug development. In this work, we propose a novel heterogeneous network embedding-based method called MDN-NMTF (Module-based Dynamic Neighborhood Non-negative Matrix Tri-Factorization) for predicting miRNA-disease associations. MDN-NMTF constructs a heterogeneous network of disease similarity network, miRNA similarity network and a known miRNA-disease association network. After that, it learns the latent vector representation for miRNAs and diseases in the heterogeneous network. Finally, the association probability is computed by the product of the latent miRNA and disease vectors. MDN-NMTF not only successfully integrates diverse biological information of miRNAs and diseases to predict miRNA-disease associations, but also considers the module properties of miRNAs and diseases in the course of learning vector representation, which can maximally preserve the heterogeneous network structural information and the network properties. At the same time, we also extend MDN-NMTF to a new version (called MDN-NMTF2) by using modular information to improve the miRNA-disease association prediction ability. Our methods and the other four existing methods are applied to predict miRNA-disease associations in four databases. The prediction results show that our methods can improve the miRNA-disease association prediction to a high level compared with the four existing methods.


Symmetry ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 905
Author(s):  
Wei Wu ◽  
Guangmin Hu ◽  
Fucai Yu

Many real-world networks can be modeled as attributed networks, where nodes are affiliated with attributes. When we implement attributed network embedding, we need to face two types of heterogeneous information, namely, structural information and attribute information. The structural information of undirected networks is usually expressed as a symmetric adjacency matrix. Network embedding learning is to utilize the above information to learn the vector representations of nodes in the network. How to integrate these two types of heterogeneous information to improve the performance of network embedding is a challenge. Most of the current approaches embed the networks in Euclidean spaces, but the networks themselves are non-Euclidean. As a consequence, the geometric differences between the embedded space and the underlying space of the network will affect the performance of the network embedding. According to the non-Euclidean geometry of networks, this paper proposes an attributed network embedding framework based on hyperbolic geometry and the Ricci curvature, namely, RHAE. Our method consists of two modules: (1) the first module is an autoencoder module in which each layer is provided with a network information aggregation layer based on the Ricci curvature and an embedding layer based on hyperbolic geometry; (2) the second module is a skip-gram module in which the random walk is based on the Ricci curvature. These two modules are based on non-Euclidean geometry, but they fuse the topology information and attribute information in the network from different angles. Experimental results on some benchmark datasets show that our approach outperforms the baselines.


2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Yuchong Gong ◽  
Yanqing Niu ◽  
Wen Zhang ◽  
Xiaohong Li

Abstract Background MiRNAs play significant roles in many fundamental and important biological processes, and predicting potential miRNA-disease associations makes contributions to understanding the molecular mechanism of human diseases. Existing state-of-the-art methods make use of miRNA-target associations, miRNA-family associations, miRNA functional similarity, disease semantic similarity and known miRNA-disease associations, but the known miRNA-disease associations are not well exploited. Results In this paper, a network embedding-based multiple information integration method (NEMII) is proposed for the miRNA-disease association prediction. First, known miRNA-disease associations are formulated as a bipartite network, and the network embedding method Structural Deep Network Embedding (SDNE) is adopted to learn embeddings of nodes in the bipartite network. Second, the embedding representations of miRNAs and diseases are combined with biological features about miRNAs and diseases (miRNA-family associations and disease semantic similarities) to represent miRNA-disease pairs. Third, the prediction models are constructed based on the miRNA-disease pairs by using the random forest. In computational experiments, NEMII achieves high-accuracy performances and outperforms other state-of-the-art methods: GRNMF, NTSMDA and PBMDA. The usefulness of NEMII is further validated by case studies. The studies demonstrate the great potential of network embedding method for the miRNA-disease association prediction, and SDNE outperforms other popular network embedding methods: DeepWalk, High-Order Proximity preserved Embedding (HOPE) and Laplacian Eigenmaps (LE). Conclusion We propose a new method, named NEMII, for predicting miRNA-disease associations, which has great potential to benefit the field of miRNA-disease association prediction.


2019 ◽  
Author(s):  
Zhen-Hao Guo ◽  
Zhu-Hong You ◽  
Yan-Bin Wang ◽  
Hai-Cheng Yi

AbstractThe explosive growth of genomic, chemical and pathological data provides new opportunities and challenges to re-recognize life activities within human cells. However, there exist few computational models that aggregate various biomarkers to comprehensively reveal the physical and functional landscape of the biology system. Here, we construct a graph called Molecular Association Network (MAN) and a representation method called Biomarker2vec. Specifically, MAN is a heterogeneous attribute network consists of 18 kinds of edges (relationships) among 8 kinds of nodes (biomarkers). Biomarker2vec is an algorithm that represents the nodes as vectors by integrating biomarker attribute and behavior. After the biomarkers are described as vectors, random forest classifier is applied to carry out the prediction task. Our approach achieved promising performance on 18 relationships, with AUC of 0.9608 and AUPR of 0.9572. We also empirically explored the contribution of attribute and behavior feature of biomarkers to the results. In addition, a drug-disease association prediction case study was performed to validate our method’s ability on a specific object. These results strongly prove that MAN is a network with rich topological and biological information and Biomarker2vec can indeed adequately characterize biomarkers. Generally, our method can achieve simultaneous prediction of both single-type and multi-type relationships, which bring beneficial inspiration to relevant scholars and expand the medical research paradigm.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hao-Yuan Li ◽  
Hai-Yan Chen ◽  
Lei Wang ◽  
Shen-Jian Song ◽  
Zhu-Hong You ◽  
...  

AbstractPrevious studies indicated that miRNA plays an important role in human biological processes especially in the field of diseases. However, constrained by biotechnology, only a small part of the miRNA-disease associations has been verified by biological experiment. This impel that more and more researchers pay attention to develop efficient and high-precision computational methods for predicting the potential miRNA-disease associations. Based on the assumption that molecules are related to each other in human physiological processes, we developed a novel structural deep network embedding model (SDNE-MDA) for predicting miRNA-disease association using molecular associations network. Specifically, the SDNE-MDA model first integrating miRNA attribute information by Chao Game Representation (CGR) algorithm and disease attribute information by disease semantic similarity. Secondly, we extract feature by structural deep network embedding from the heterogeneous molecular associations network. Then, a comprehensive feature descriptor is constructed by combining attribute information and behavior information. Finally, Convolutional Neural Network (CNN) is adopted to train and classify these feature descriptors. In the five-fold cross validation experiment, SDNE-MDA achieved AUC of 0.9447 with the prediction accuracy of 87.38% on the HMDD v3.0 dataset. To further verify the performance of SDNE-MDA, we contrasted it with different feature extraction models and classifier models. Moreover, the case studies with three important human diseases, including Breast Neoplasms, Kidney Neoplasms, Lymphoma were implemented by the proposed model. As a result, 47, 46 and 46 out of top-50 predicted disease-related miRNAs have been confirmed by independent databases. These results anticipate that SDNE-MDA would be a reliable computational tool for predicting potential miRNA-disease associations.


2020 ◽  
Vol 21 (11) ◽  
pp. 1078-1084
Author(s):  
Ruizhi Fan ◽  
Chenhua Dong ◽  
Hu Song ◽  
Yixin Xu ◽  
Linsen Shi ◽  
...  

: Recently, an increasing number of biological and clinical reports have demonstrated that imbalance of microbial community has the ability to play important roles among several complex diseases concerning human health. Having a good knowledge of discovering potential of microbe-disease relationships, which provides the ability to having a better understanding of some issues, including disease pathology, further boosts disease diagnostics and prognostics, has been taken into account. Nevertheless, a few computational approaches can meet the need of huge scale of microbe-disease association discovery. In this work, we proposed the EHAI model, which is Enhanced Human microbe- disease Association Identification. EHAI employed the microbe-disease associations, and then Gaussian interaction profile kernel similarity has been utilized to enhance the basic microbe-disease association. Actually, some known microbe-disease associations and a large amount of associations are still unavailable among the datasets. The ‘super-microbe’ and ‘super-disease’ were employed to enhance the model. Computational results demonstrated that such super-classes have the ability to be helpful to the performance of EHAI. Therefore, it is anticipated that EHAI can be treated as an important biological tool in this field.


2021 ◽  
Vol 15 (4) ◽  
pp. 1-23
Author(s):  
Guojie Song ◽  
Yun Wang ◽  
Lun Du ◽  
Yi Li ◽  
Junshan Wang

Network embedding is a method of learning a low-dimensional vector representation of network vertices under the condition of preserving different types of network properties. Previous studies mainly focus on preserving structural information of vertices at a particular scale, like neighbor information or community information, but cannot preserve the hierarchical community structure, which would enable the network to be easily analyzed at various scales. Inspired by the hierarchical structure of galaxies, we propose the Galaxy Network Embedding (GNE) model, which formulates an optimization problem with spherical constraints to describe the hierarchical community structure preserving network embedding. More specifically, we present an approach of embedding communities into a low-dimensional spherical surface, the center of which represents the parent community they belong to. Our experiments reveal that the representations from GNE preserve the hierarchical community structure and show advantages in several applications such as vertex multi-class classification, network visualization, and link prediction. The source code of GNE is available online.


Sign in / Sign up

Export Citation Format

Share Document