scholarly journals Dependence of Capacitive Properties of an EDLC on Exfoliation Time of Graphite Electrodes

Author(s):  
Dinithi S. K. Rajaguru ◽  
Kamal Vidanapathirana ◽  
Kumudu S. Perera

Abstract The scientific focus has been directed through the production and application of ‘wonder material- graphene’ after its discovery in 2004. But the mass production cost has become a huge disadvantage towards commercializing graphene based manufactures. As alternative low cost material, exfoliated graphite (EG) has emerged to be a novel nanostructured carbon material with a potential for electrochemical energy storage device applications owed to its unique characteristics similar to graphene. In this study a series of EG samples were prepared by a surfactant mediated liquid phase exfoliation method by changing the exfoliation time. Electrochemical double layer capacitors (EDLCs) were fabricated using different EG samples as an electrode material and a gel polymer electrolyte (GPE). They were characterized by electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV) and galvanostatic charge discharge (GCD) techniques. EDLC having EG electrodes of 10 h exfoliation time showed the highest results with single electrode specific capacitance (Csc) of 4.12 F g− 1, single electrode specific discharge capacitance (Csd) of 1.10 F g− 1 and relaxation time of 0.22 s from CV, GCD and EIS respectively.

2018 ◽  
Vol 1 (1) ◽  
pp. 52
Author(s):  
P. D. D Dilhani ◽  
K. S. Perera ◽  
K. P. Vidanapathirana ◽  
K. Vignarooban

<p><em>Ever growing high concerns over use of safe and low cost devices have provided a substantial attention on natural materials. As such natural graphite which has been deeply integrated into numerous applications is being received a consideration to be used for electrochemical devices. The main objective of this study is to explore the suitability of Sri Lankan natural graphite to serve in electrochemical double layer capacitors (EDLCs). In order to uplift the safety of the device, a gel polymer electrolyte was used instead of a liquid electrolyte. Two identical electrodes were consisted with Sri Lankan natural graphite as the active material and polyvinylidenefluoride as the binder. To prepare the electrolyte, polyvinylidenefluoride co hexafluoropropylene and magnesium perchlorate were used as the polymer and the salt respectively. Cyclic voltammetry test results show that single electrode specific capacitance is depending on the potential window. The percentage reduction of capacitance with continuous cycling was about 28%. Nyquist plot of EDLC further confirm the capacitive nature at low frequency.</em><em></em></p>


2021 ◽  
Author(s):  
KAPURALAGE WATHSALA PRASADINI ◽  
Kumudu Sandhya Perera ◽  
Kamal Pushpakumara Vidanapathirana

Abstract Redox capacitor, which is one type of supercapacitor, has been attracted tremendously as they show a satisfactory specific capacitance, good cycle ability, and good stability. The present study reveals a redox capacitor fabricated with an ionic liquid (IL) based gel polymer electrolyte (GPE). Electrodes of the redox capacitor were fabricated with the conducting polymer, polypyrrole (PPy). The composition of the GPE was polyvinylidenefluoride-co-hexafluoropropylene (PVdF-co-HFP) : 1-ethyl-3-methylimidazolium trifluoromethanesulfonate (1E3MITF) : ZnTF. Characterization of redox capacitor was done by electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), and galvanostatic charge-discharge (GCD) tests. The relaxation time constant (τ0) of the redox capacitor is about 31.57 s implying somewhat fast redox reactions. Initial single electrode specific capacitance (CSC) was 150.16 Fg-1 and at the 500th cycle, it was 40.03 Fg-1. The decrease of the CSC may be due to the formation of the passivation layer at the GPE / electrode interface resulting in degradation upon cycling. The GCD test resulted 48.40 Fg-1 of initial single electrode specific discharge capacitance (Csd) value. Upon 1000 cycles, it was reached 22.25 Fg-1. The decrease of Csd may be due to the degradation of the electrode and the IL-based GPE upon prolonged cycling.


2011 ◽  
Vol 15 (2) ◽  
pp. 89-95 ◽  
Author(s):  
Farah Alvi ◽  
Punya A. Basnayaka ◽  
Manoj K. Ram ◽  
Humberto Gomez ◽  
Elias Stefanako ◽  
...  

The graphene (G)-polythiophene (PTh) nanocomposite was synthesized by a chemical oxidative polymerization technique and characterized using Field Emission Scanning Electron Microscopy (FESEM), High-Resolution Transmission Electron Microscopy (HRTEM), Raman Spectroscopy, Fourier transform Infrared spectroscopy (FTIR), X-ray-diffraction (XRD), Electrochemical Impedance spectroscopy(EIS) and cyclic voltammetry (CV) techniques. The electrochemical properties of G-PTh nanocomposite supercapacitor electrodes were investigated in different electrolytes solutions and a specific discharge capacitance of 154 F/g was estimated from different charge/discharge current cycles. Our proposed research is transformative as the G-conducting polymer based electrode material with unique and excellent properties, such as, high conductivity, wider tunable potential window, high stability of the electrode material in doped form, faster charge transfer rate, and short charging times, that allows the fabrication of high performance supercapacitors for practical applications.


2019 ◽  
Author(s):  
Charlys Bezerra ◽  
Géssica Santos ◽  
Marilia Pupo ◽  
Maria Gomes ◽  
Ronaldo Silva ◽  
...  

<p>Electrochemical oxidation processes are promising solutions for wastewater treatment due to their high efficiency, easy control and versatility. Mixed metal oxides (MMO) anodes are particularly attractive due to their low cost and specific catalytic properties. Here, we propose an innovative thermal decomposition methodology using <a>polyvinyl alcohol (PVA)</a> as a solvent to prepare Ti/RuO<sub>2</sub>–IrO<sub>2</sub> anodes. Comparative anodes were prepared by conventional method employing a polymeric precursor solvent (Pechini method). The calcination temperatures studied were 300, 400 and 500 °C. The physical characterisation of all materials was performed by X-ray diffraction and scanning electron microscopy coupled with energy dispersive spectroscopy, while electrochemical characterisation was done by cyclic voltammetry, accelerated service lifetime and electrochemical impedance spectroscopy. Both RuO<sub>2</sub> and IrO<sub>2</sub> have rutile-type structures for all anodes. Rougher and more compact surfaces are formed for the anodes prepared using PVA. Amongst temperatures studied, 300 °C using PVA as solvent is the most suitable one to produce anodes with expressive increase in voltammetric charge (250%) and accelerated service lifetime (4.3 times longer) besides reducing charge-transfer resistance (8 times lower). Moreover, the electrocatalytic activity of the anodes synthesised with PVA toward the Reactive Blue 21 dye removal in chloride medium (100 % in 30 min) is higher than that prepared by Pechini method (60 min). Additionally, the removal total organic carbon point out improved mineralisation potential of PVA anodes. Finally, this study reports a novel methodology using PVA as solvent to synthesise Ti/RuO<sub>2</sub>–IrO<sub>2</sub> anodes with improved properties that can be further extended to synthesise other MMO compositions.</p>


Author(s):  
Rouwei Yan ◽  
Biao Xu ◽  
K. P. Annamalai ◽  
Tianlu Chen ◽  
Zhiming Nie ◽  
...  

Background : Renewable energies are in great demand because of the shortage of traditional fossil energy and the associated environmental problems. Ni and Se-based materials are recently studied for energy storage and conversion owing to their reasonable conductivities and enriched redox activities as well as abundance. However, their electrochemical performance is still unsatisfactory for practical applications. Objective: To enhance the capacitance storage of Ni-Se materials via modification of their physiochemical properties with Fe. Methods: A two-step method was carried out to prepare FeNi-Se loaded reduced graphene oxide (FeNi-Se/rGO). In the first step, metal salts and graphene oxide (GO) were mixed under basic condition and autoclaved to obtain hydroxide intermediates. As a second step, selenization process was carried out to acquire FeNi-Se/rGO composites. Results: X-ray diffraction measurements (XRD), nitrogen adsorption at 77K, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were carried out to study the structures, porosities and the morphologies of the composites. Electrochemical measurements revealed that FeNi-Se/rGO notably enhanced capacitance than the NiSe/G composite. This enhanced performance was mainly attributed to the positive synergistic effects of Fe and Ni in the composites, which not only had influence on the conductivity of the composite but also enhanced redox reactions at different current densities. Conclusion: NiFe-Se/rGO nanocomposites were synthesized in a facile way. The samples were characterized physicochemically and electrochemically. NiFeSe/rGO giving much higher capacitance storage than the NiSe/rGO explained that the nanocomposites could be an electrode material for energy storage device applications.


Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4344
Author(s):  
Merve Uca ◽  
Ece Eksin ◽  
Yasemin Erac ◽  
Arzum Erdem

Hydroxyapatite nanoparticles (HaP) and ionic liquid (IL) modified pencil graphite electrodes (PGEs) are newly developed in this assay. Electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and cyclic voltammetry (CV) were applied to examine the microscopic and electrochemical characterization of HaP and IL-modified biosensors. The interaction of curcumin with nucleic acids and polymerase chain reaction (PCR) samples was investigated by measuring the changes at the oxidation signals of both curcumin and guanine by differential pulse voltammetry (DPV) technique. The optimization of curcumin concentration, DNA concentration, and the interaction time was performed. The interaction of curcumin with PCR samples was also investigated by gel electrophoresis.


Materials ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 594 ◽  
Author(s):  
Mara Serrapede ◽  
Marco Fontana ◽  
Arnaud Gigot ◽  
Marco Armandi ◽  
Glenda Biasotto ◽  
...  

A simple, low cost, and “green” method of hydrothermal synthesis, based on the addition of l-ascorbic acid (l-AA) as a reducing agent, is presented in order to obtain reduced graphene oxide (rGO) and hybrid rGO-MoO2 aerogels for the fabrication of supercapacitors. The resulting high degree of chemical reduction of graphene oxide (GO), confirmed by X-Ray Photoelectron Spectroscopy (XPS) analysis, is shown to produce a better electrical double layer (EDL) capacitance, as shown by cyclic voltammetric (CV) measurements. Moreover, a good reduction yield of the carbonaceous 3D-scaffold seems to be achievable even when the precursor of molybdenum oxide is added to the pristine slurry in order to get the hybrid rGO-MoO2 compound. The pseudocapacitance contribution from the resulting embedded MoO2 microstructures, was then studied by means of CV and electrochemical impedance spectroscopy (EIS). The oxidation state of the molybdenum in the MoO2 particles embedded in the rGO aerogel was deeply studied by means of XPS analysis and valuable information on the electrochemical behavior, according to the involved redox reactions, was obtained. Finally, the increased stability of the aerogels prepared with l-AA, after charge-discharge cycling, was demonstrated and confirmed by means of Field Emission Scanning Electron Microscopy (FESEM) characterization.


Sign in / Sign up

Export Citation Format

Share Document