scholarly journals Low miR-1231 expression predicts poor prognosis in non-small cell lung cancer and accelerates cell proliferation, migration and invasion

2020 ◽  
Author(s):  
Lina Zhu ◽  
Chu Zhang ◽  
Hui Yu ◽  
Lirong Zhu

Abstract Background MicroRNAs (miRNAs) have been confirmed to be involved in the tumor progression of various cancer types. This study aimed to assess the prognostic significance and biological function of miR-1231 in patients with non-small cell lung cancer (NSCLC). Methods The expression of miR-1231 was estimated using quantitative real-time polymerase chain reaction (qRT-PCR). Kaplan-Meier survival curves and Cox regression analysis were used to evaluate the prognosis value of miR-1231 in patients with NSCLC. Cell experiments were performed to assess the biological function of miR-1231 in the tumor progression. Results In this study, we found that miR-1231 was an important tumor suppressor with significantly low expression in NSCLC tissues and cell lines compared with normal controls (all P < 0.001). MiR-1231 expression was significantly associated with tumor size (P = 0.037), lymph node metastasis (P = 0.001) and TNM stages (P = 0.001). Furthermore, the patients with low miR-1231 expression had shorter survival time than those with high miR-1231 expression (log-rank P = 0.010). In addition, miR-1231 was found to serve as an independent prognostic biomarker for the patients. The results of cell experiments indicated that miR-1231 downregulation could markedly promote NSCLC cell proliferation, migration and invasion, while miR-1231 overexpression could markedly inhibit NSCLC cell proliferation, migration and invasion. Conclusion All the data revealed that a downregulated expression of miR-1231 predicts the poor prognosis of NSCLC and promotes the tumor cell proliferation, migration and invasion. Therefore, we considered that miR-1231 may serve as a therapeutic target for NSCLC treatment.

2021 ◽  
Author(s):  
Lina Zhu ◽  
Ke Zhang ◽  
Chu Zhang ◽  
Hui Yu ◽  
Lirong Zhu

Aim: miRNAs have been found to be involved in the tumor progression. This study aimed to assess the prognostic significance and biological function of miRNA-1231 (miR-1231) in non-small-cell lung cancer (NSCLC). Materials & methods: Expression of miR-1231 was measured by using quantitative real-time PCR. The prognosis value of miR-1231 was evaluated by Kaplan–Meier survival curves and Cox regression analysis. The biological function of miR-1231 was further studied. Results: Expression of miR-1231 in NSCLC patients and NSCLC cell lines were decreased. MiR-1231 was an independent prognostic biomarker. Overexpression of miR-1231 inhibited NSCLC cell proliferation, migration and invasion. Conclusion: Downregulated expression of miR-1231 serves as a prognostic biomarker of NSCLC and may be a potential therapeutic target.


2019 ◽  
Vol 39 (5) ◽  
Author(s):  
Yunpeng Liu ◽  
Xingyu Lin ◽  
Shiyao Zhou ◽  
Peng Zhang ◽  
Guoguang Shao ◽  
...  

Abstract Background: The HOXA cluster antisense RNA 2 (HOXA-AS2) has recently been discovered to be involved in carcinogenesis in multiple cancers. However, the role and underlying mechanism of HOXA-AS2 in non-small cell lung cancer (NSCLC) yet need to be unraveled. Methods: HOXA-AS2 expression in NSCLC tissues and cell lines was detected using quantitative real-time PCR (qRT-PCR). Furthermore, the effects of HOXA-AS2 on NSCLC cell proliferation, apoptosis, migration, and invasion were assessed by MTS, flow cytometry, wound healing and transwell invasion assays, respectively. Starbase2.0 predicted and luciferase reporter and RNA immunoprecipitation (RIP) assays were used to validate the association of HOXA-AS2 and miR-520a-3p in NSCLC cells. Results: Our results revealed that HOXA-AS2 in NSCLC tissues were up-regulated and cell lines, and were associated with poor prognosis and overall survival. Further functional assays demonstrated that HOXA-AS2 knockdown significantly inhibited NSCLC cell proliferation, induced cell apoptosis and suppressed migration and invasion. Starbase2.0 predicted that HOXA-AS2 sponge miR-520a-3p at 3′-UTR, which was confirmed using luciferase reporter and RIP assays. miR-520a-3p expression was inversely correlated with HOXA-AS2 expression in NSCLC tissues. In addition, miR-520a-3p inhibitor attenuated the inhibitory effect of HOXD-AS2-depletion on cell proliferation, migration and invasion of NSCLC cells. Moreover, HOXA-AS2 could regulate HOXD8 and MAP3K2 expression, two known targets of miR-520a-3p in NSCLC. Conclusion: These findings implied that HOXA-AS2 promoted NSCLC progression by regulating miR-520a-3p, suggesting that HOXA-AS2 could serve as a therapeutic target for NSCLC.


Open Medicine ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. 1150-1159
Author(s):  
Butong Sun ◽  
Dan Cong ◽  
Kang Chen ◽  
Yuansong Bai ◽  
Jun Li

Abstract Background Non-small cell lung cancer (NSCLC) is a malignant tumor with the highest mortality rate in our country. It has been found in many studies that microRNA-4521 (miR-4521) is abnormally expressed and plays a role in clear cell renal cell carcinoma and other cancers. Objective The purpose of this study was to explore the relationship between miR-4521 expression and clinical prognosis, as well as its influence on cell biological behavior. Methods The expression differences of miR-4521 in NSCLC tissues and cells were examined by qRT-PCR technology. Kaplan–Meier survival analysis and Cox regression analysis were used to analyze the clinical information and survival status of patients to explore the relationship. Using the vitro cell MTT assay, Transwell assay, and western-blot analysis, the effects of miR-4521 on cell proliferation, migration, and invasion were analyzed. Results The expression of miR-4521 in NSCLC tissues and cells was significantly downregulated. miR-4521 can be used as an independent prognostic factor. The survival rate of the miR-4521 low expression group was lower, which was significantly related to poor prognosis. In addition, the low expression of miR-4521 significantly promoted cell proliferation, migration, and invasion with highly expressed related protein levels. FOXM1 might be a direct target of miR-4521. Conclusion The results of this study showed that the low expression of miR-4521 indicated the poor prognosis of NSCLC and promoted cell proliferation, migration, and invasion by targeting FOXM1.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Yanchao Deng ◽  
Liwei Zhang ◽  
Ruiying Luo

Abstract Background Non-small cell lung cancer (NSCLC) is a common malignancy around the globe. Increasing long non-coding RNAs (lncRNAs) have been confirmed to be associated with the progression of cancers, including NSCLC. Long intergenic non-protein coding RNA 1783 (LINC01783) is a novel lncRNA and its regulatory function as competing endogenous RNA (ceRNA) has not been studied in NSCLC. Methods RT-qPCR measured the expression level of LINC01783 in NSCLC cells. CCK-8, EdU, transwell and wound healing assays were conducted to detect cell proliferation, migration and invasion in NSCLC. The relationship between miR-432-5p and LINC01783 along with delta like 1 (DLL-1) was illustrated by RNA pull down, RIP and luciferase reporter assays. Results LINC01783 was found remarkably increased in NSCLC cell lines, and down-regulation of LINC01783 suppressed cell proliferation, migration and invasion. Then, we discovered Notch pathway was related to the progression of NSCLC, and DLL-1 expression was reduced by LINC01783 knockdown. Furthermore, DLL-1 overexpression could counteract the suppressive effects of LINC01783 down-regulation on the growth of NSCLC cells. MiR-432-5p was observed to be the mutual miRNA that could bind with both LINC01783 and DLL-1. Overexpression of miR-432-5p inhibited DLL-1 expression. In the rescue assays, miR-432-5p depletion offset the impacts of LINC01783 knockdown, and then DLL-1 silence recovered the influence of miR-432-5p down-regulation on NSCLC cell growth. Conclusion LINC01783 aggravates NSCLC cell growth by regulating Notch pathway and sponging miR-432-5p, being a potential target in the treatment for NSCLC.


2019 ◽  
Vol 22 (4) ◽  
pp. 238-244 ◽  
Author(s):  
Gang Chen ◽  
Bo Ye

Purpose: Epithelial-to-Mesenchymal Transition (EMT) was reported to play a key role in the development of Non-Small Cell Lung Cancer (NSCLC). The process of EMT is regulated by the changes of miRNAs expression. However, it is still unknown which miRNA changed the most in the process of canceration and whether these changes played a role in tumor development. Methods: A total of 36 SCLC patients treated in our hospital between 11th, 2015 and 10th, 2017 were enrolled. The samples of cancer tissues and paracancer tissues of patients were collected and analyzed. Then, the miRNAs in normal lung cells and NSCLC cells were also analyzed. In the presence of TGF-β, we transfected the miRNA mimics or inhibitor into NSCLC cells to investigate the role of the significantly altered miRNAs in cell migration and invasion and in the process of EMT. Results: MiR-330-3p was significantly up-regulated in NSCLC cell lines and tissues and miRNA- 205 was significantly down-regulated in NSCLC cell lines and NSCLC tissues. Transfected miRNA-205 mimics or miRMA-330-3p inhibitor inhibited the migration and invasion of NCIH1975 cell and restrained TGF-β-induced EMT in NSCLC cells. Conclusion: miRNA-330-3p and miRNA-205 changed the most in the process of canceration in NSCLC. Furthermore, miR-330-3p promoted cell invasion and metastasis in NSCLC probably by promoting EMT and miR-205 could restrain NSCLC likely by suppressing EMT.


2018 ◽  
Vol 45 (6) ◽  
pp. 2213-2224 ◽  
Author(s):  
Meng Zhao ◽  
Yahui Liu ◽  
Ran Liu ◽  
Jin Qi ◽  
Yongwang Hou ◽  
...  

Background/Aims: Cytokines are key players in tumorigenesis and are potential targets in cancer treatment. Although IL-6 has attracted considerable attention, interleukin 11 (IL-11), another member of the IL-6 family, has long been overlooked, and little is known regarding its specific function in non-small cell lung cancer (NSCLC). In this study, we explored IL-11’s role in NSCLC and the detailed mechanism behind it. Methods: Cell proliferation in response to IL-11 was determined by colony formation, BrdU incorporation and MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) assay. Cell motility was measured by Transwell and wound healing assays. NSCLC xenograft models were used to confirm oncogenic function of IL-11 in vivo. Immunohistochemical staining and western blot assay were performed to detect epithelial–mesenchymal transition (EMT) markers and cell signaling pathway alterations. Eighteen NSCLC patients and 5 normal lung samples were collected together with data from an online database to determine the link between IL-11 expression and malignant progression. Results: We observed that IL-11 was upregulated in NSCLC samples compared with normal tissue samples and correlated with poor prognosis. Data from in vitro and in vivo models indicated that IL-11 promotes cell proliferation and tumorigenesis. Cell migration and invasion were also enhanced by IL-11. Epithelial–mesenchymal transition (EMT) was also observed after IL-11 incubation. Furthermore, IL-11 activated AKT and STAT3 in our experimental models. In addition, we observed that hypoxia induced IL-11 expression in NSCLC cells. Deferoxamine (DFX) or dimethyloxalylglycine (DMOG) induced hypoxia-inducible factor 1-alpha (HIF1α) upregulation, which enhanced IL-11 expression in NSCLC cells. Conclusions: Taken together, our results indicate that IL-11 is an oncogene in NSCLC, and elucidating the mechanism behind it may provide insights for NSCLC treatment.


Sign in / Sign up

Export Citation Format

Share Document