scholarly journals Dual targeting of cytokine storm and viral replication in COVID-19 by plant-derived steroidal pregnanes in silico

Author(s):  
Gideon A. Gyebi ◽  
Oludare M. Ogunyemi ◽  
Ibrahim M. Ibrahim ◽  
Saheed O. Afolabi ◽  
Joseph O. Adebayo

Abstract The high morbidity and mortality rate of Severe Acute Respiratory Syndrome CoronaVirus 2 (SARS-CoV-2) infection arises majorly from the Acute Respiratory Distress Syndrome and “cytokine storm” syndrome, which is sustained by an aberrant systemic inflammatory response and elevated pro-inflammatory cytokines. Thus, phytocompounds with broad-spectrum anti-inflammatory activity that target multiple SARS-CoV-2 proteins will enhance the development of effective drugs against the disease. In this study, an in-house library of 106 steriodal plant-derived pregnanes (PDPs) was docked in the active regions of human glucocorticoid receptors (hGRs) in a comparative molecular docking analysis. Based on the minimal binding energy and a comparative dexamethason binding mode analysis, a list of top twenty ranked PDPs docked in the agonist conformation of hGR, with binding energies ranging between -9.8 and -11.2 Kcal/mol, was obtained and analyzed for interactions with the human Janus kinases 1 and Interleukins-6 and SARS-CoV-2 3-chymotrypsin-like protease, Papain-like protease and RNA-dependent RNA polymerase. For each target protein, the top three ranked PDPs were selected. Eight PDPs (bregenin, hirundigenin, anhydroholantogenin, atratogenin A, atratogenin B, glaucogenin A, glaucogenin C and glaucogenin D) with high binding tendencies to the catalytic residues of multiple targets were identified. A high degree of structural stability was observed from the 100 ns molecular dynamics simulation analyses of glaucogenin C and hirundigenin complexes of hGR. The selected top-eight ranked PDPs demonstrated favourable druggable and in silico ADMET properties. Thus, the therapeutic potentials of glaucogenin C and hirundigenin can be explored for further in vitro and in vivo studies.

2020 ◽  
Vol 63 (1) ◽  
Author(s):  
Ghazala Muteeb ◽  
Adil Alshoaibi ◽  
Mohammad Aatif ◽  
Md. Tabish Rehman ◽  
M. Zuhaib Qayyum

AbstractThe recent dissemination of SARS-CoV-2 from Wuhan city to all over the world has created a pandemic. COVID-19 has cost many human lives and created an enormous economic burden. Although many drugs/vaccines are in different stages of clinical trials, still none is clinically available. We have screened a marine seaweed database (1110 compounds) against 3CLpro of SARS-CoV-2 using computational approaches. High throughput virtual screening was performed on compounds, and 86 of them with docking score <  − 5.000 kcal mol−1 were subjected to standard-precision docking. Based on binding energies (< − 6.000 kcal mol−1), 9 compounds were further shortlisted and subjected to extra-precision docking. Free energy calculation by Prime-MM/GBSA suggested RC002, GA004, and GA006 as the most potent inhibitors of 3CLpro. An analysis of ADMET (Absorption, Distribution, Metabolism, Excretion, and Toxicity) properties of RC002, GA004, and GA006 indicated that only RC002 (callophysin A, from red alga Callophycus oppositifolius) passed Lipinski’s, Veber’s, PAINS and Brenk’s filters and displayed drug-like and lead-like properties. Analysis of 3CLpro-callophysin A complex revealed the involvement of salt bridge, hydrogen bonds, and hydrophobic interactions. callophysin A interacted with the catalytic residues (His41 and Cys145) of 3CLpro; hence it may act as a mechanism-based competitive inhibitor. Docking energy and docking affinity of callophysin A towards 3CLpro was − 8.776 kcal mol−1 and 2.73 × 106 M−1, respectively. Molecular dynamics simulation confirmed the stability of the 3CLpro-callophysin A complex. The findings of this study may serve as the basis for further validation by in vitro and in vivo studies.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jawaria Iltaf ◽  
Sobia Noreen ◽  
Muhammad Fayyaz ur Rehman ◽  
Shazia Akram Ghumman ◽  
Fozia Batool ◽  
...  

The screening of hair follicles, dermal papilla cells, and keratinocytes through in vitro, in vivo, and histology has previously been reported to combat alopecia. Ficus benghalensis has been used conventionally to cure skin and hair disorders, although its effect on 5α-reductase II is still unknown. Currently, we aim to analyze the phytotherapeutic impact of F. benghalensis leaf extracts (FBLEs) for promoting hair growth in rabbits along with in vitro inhibition of the steroid isozyme 5α-reductase II. The inhibition of 5α-reductase II by FBLEs was assessed by RP-HPLC, using the NADPH cofactor as the reaction initiator and Minoxin (5%) as a positive control. In silico studies were performed using AutoDock Vina to visualize the interaction between 5α-reductase II and the reported phytoconstituents present in FBLEs. Hair growth in female albino rabbits was investigated by applying an oral dose of the FBLE formulation and control drug to the skin once a day. The skin tissues were examined by histology to see hair follicles. Further, FAAS, FTIR, and antioxidants were performed to check the trace elements and secondary metabolites in the FBLEs. The results of RP-HPLC and the binding energies showed that FBLEs reduced the catalytic activity of 5α-reductase II and improved cell proliferation in rabbits. The statistical analysis (p &lt; 0.05 or 0.01) and percentage inhibition (&gt;70%) suggested that hydroalcoholic FBLE has more potential in increasing hair growth by elongating hair follicle’s anagen phase. FAAS, FTIR, and antioxidant experiments revealed sufficient concentrations of Zn, Cu, K, and Fe, together with the presence of polyphenols and scavenging activity in FBLE. Overall, we found that FBLEs are potent in stimulating hair follicle maturation by reducing the 5α-reductase II action, so they may serve as a principal choice in de novo drug designing to treat hair loss.


Author(s):  
DESSY AGUSTINI ◽  
LEO VERNADESLY ◽  
DELVIANA ◽  
THEODORUS

Objectives: This research aims to determine the efficacy of compounds in robusta coffee against colorectal cancer through the inhibition of the T-cell immunoglobulin and immunoreceptor tyrosine-based inhibitory motif domain (TIGIT) receptor. Methods: This in silico study has been conducted in computing platform from June to August 2021. The selected test compounds would go through the Lipinski rule screening through the SwissADME website and the compounds that met these regulations would be docked to the TIGIT protein using AutoDock Tools and AutoDock Vina. The interactions with the highest binding energies were visualized using BIOVIA Discovery Studio 2020. The test compounds then underwent a toxicity profile analysis on the admetSAR 2.0 website. Results: All test compounds complied with the Lipinski rule. The molecular docking results showed the highest binding energy in kahweol and cafestol (−8.1 kcal/mol) compared to OMC (−7.9 kcal/mol), chlorogenic acid (−7.8 kcal/mol), caffeic acid (−6.3 kcal/mol), caffeine (−6.1 kcal/mol), trigonelline (−5.3 kcal/mol), HMF (−5.1 kcal/mol), furfuryl alcohol (−4.4 kcal/mol), and 5-fluorouracil as the comparator drug (−5.3 kcal/mol). Kahweol, cafestol, and 5-fluorouracil revealed the hydrophobic interactions and hydrogen bonds with amino acid residues in TIGIT. Kahweol and cafestol unveiled minimal toxicity prediction Conclusion: Kahweol and cafestol demonstrated the best results in inhibiting the TIGIT protein which played a role in colorectal cancer. In vitro and in vivo studies are needed to strengthen the findings of this research.


Molecules ◽  
2022 ◽  
Vol 27 (2) ◽  
pp. 469
Author(s):  
Nasirudeen Idowu Abdulrashid ◽  
Suleiman Aminu ◽  
Rahma Muhammad Adamu ◽  
Nasir Tajuddeen ◽  
Murtala Bindawa Isah ◽  
...  

Sub-Saharan Africa is profoundly challenged with African Animal Trypanosomiasis and the available trypanocides are faced with drawbacks, necessitating the search for novel agents. Herein, the chemotherapeutic potential of phloroglucinol on T. congolense infection and its inhibitory effects on the partially purified T. congolense sialidase and phospholipase A2 (PLA2) were investigated. Treatment with phloroglucinol for 14 days significantly (p < 0.05) suppressed T. congolense proliferation, increased animal survival and ameliorated anemia induced by the parasite. Using biochemical and histopathological analyses, phloroglucinol was found to prevent renal damages and splenomegaly, besides its protection against T. congolense-associated increase in free serum sialic acids in infected animals. Moreover, the compound inhibited bloodstream T. congolense sialidase via mixed inhibition pattern with inhibition binding constant (Ki) of 0.181 µM, but a very low uncompetitive inhibitory effects against PLA2 (Ki > 9000 µM) was recorded. Molecular docking studies revealed binding energies of −4.9 and −5.3 kcal/mol between phloroglucinol with modeled sialidase and PLA2 respectively, while a 50 ns molecular dynamics simulation using GROMACS revealed the sialidase-phloroglucinol complex to be more compact and stable with higher free binding energy (−67.84 ± 0.50 kJ/mol) than PLA2-phloroglucinol complex (−77.17 ± 0.52 kJ/mol), based on MM-PBSA analysis. The sialidase-phloroglucinol complex had a single hydrogen bond interaction with Ser453 while none was observed for the PLA2-phloroglucinol complex. In conclusion, phloroglucinol showed moderate trypanostatic activity with great potential in ameliorating some of the parasite-induced pathologies and its anti-anemic effects might be linked to inhibition of sialidase rather than PLA2.


2020 ◽  
Author(s):  
Mustafa Alhaji Isa ◽  
Muhammad M Ibrahim

The 3-hydroquinate synthase (DHQase) is an enzyme that catalyzes the third step of the shikimate pathway in <i>Mycobacterium tuberculosis</i> (MTB), by converting 3-dehydroquinate into 3-dehydroshikimate. In this study, the novel inhibitors of DHQase from MTB was identified using in silico approach. The crystal structure of DHQase bound to 1,3,4-trihydroxy-5-(3-phenoxypropyl)-cyclohexane-1-carboxylic acid (CA) obtained from the Protein Data Bank (PDB ID: 3N76). The structure prepared through energy minimization and structure optimization. A total of 9699 compounds obtained from Zinc and PubChem databases capable of binding to DHQase and subjected to virtual screening through Lipinski’s rule of five and molecular docking analysis. Eight (8) compounds with good binding energies, ranged between ─8.99 to ─8.39kcal/mol were selected, better than the binding energy of ─4.93kcal/mol for CA and further filtered for pharmacokinetic properties (Absorption, Distribution, Metabolism, Excretion, and Toxicity or ADMET). Five compounds (ZINC14981770, ZINC14741224, ZINC14743698, ZINC13165465, and ZINC8442077) which had desirable pharmacokinetic properties selected for molecular dynamic (MD) simulation and molecular generalized born surface area (MM-GBSA) analyses. The results of the analyses showed that all the compounds formed stable and rigid complexes after the 50ns MD simulation and also had a lower binding as compared to CA. Therefore, these compounds considered as good inhibitors of MTB after in vitro and in vivo validation.”


Author(s):  
Akachukwu Ibezim ◽  
Mbanefo S. Madukaife ◽  
Sochi C Osigwe ◽  
Nadja Engel ◽  
Ramanathan Karuppasamy ◽  
...  

Plasmodium species that cause malaria, a disease responsible for about half a million deaths per annum despite concerted efforts to combat it. The causative agent depends on type III beta phosphatidylinositol 4-kinase (PPI4K) during the development of merozoite. PPI4K is the only clinically validated Plasmodium kinase so far and its inhibitors are effective both in vitro and in vivo. In this work, a small library of ~22 000 fragments was virtually screened using PPI4K homology model to discover potential ligands of the enzyme. 16 virtual hits were selected based on &le; -9.0 kcal/mol binding energy cut off and were subjected to similarity and substructure searching after they had passed PAINS screening. The derivatives obtained showed improved binding energies, which ranged from -10.00 to -13.80 kcal/mol. Moreover, the topmost ranking compound 31, with interesting drug-like quality was stable within the protein&rsquo;s binding cavity during the 10 ns molecular dynamics simulation period. In addition, analysis of its binding pose revealed some unique binding interactions with PPI4K active site residues as the basis for the observed improved binding affinity. Overall, compound 31 appears to be a viable starting point for the development of PPI4K inhibitors with antimalarial activity.


2021 ◽  
Vol 11 (4-S) ◽  
pp. 86-100
Author(s):  
N ZAHEER AHMED ◽  
DICKY JOHN DAVIS ◽  
NOMAN ANWAR ◽  
ASIM ALI KHAN ◽  
RAM PRATAP MEENA ◽  
...  

COVID-19 was originated in Wuhan, China, in December 2019 and has been declared a pandemic disease by WHO. The number of infected cases continues unabated and so far, no specific drug approved for targeted therapy. Hence, there is a need for drug discovery from traditional medicine. Tiryaq-e-Wabai is a well-documented formulation in Unani medicine for its wide use as prophylaxis during epidemics of cholera, plague and other earlier epidemic diseases. The objective of the current study is to generate in-silico evidence and evaluate the potency of Tiryaq-e-Wabai against SARS-CoV-2 spike (S) glycoprotein and main protease (3CLpro). The structures of all phytocompounds used in this study were retrieved from PubChem database and some were built using Marvin Sketch. The protein structure of the SARS-CoV-2 S glycoprotein and 3CLpro was retrieved from the PDB ID: 6LZG and 7BQY respectively. AutoDock Vina was used to predict top ranking poses with best scores. The results of the molecular docking showed that phytocompounds of Tiryaq-e-Wabai exhibited good docking power with spike glycoprotein and 3CLpro. Among tested compounds Crocin from Zafran and Aloin A from Sibr showed strong binding to spike glycoprotein and 3CLpro respectively. Molecular dynamics simulation confirmed the stability of the S glycoprotein-Crocin and 3CLpro-Aloin A complexes. The Unani formulation Tiryaq-e-Wabai has great potential to inhibit the SARS-CoV-2, which have to be substantiated with further in-vitro and in-vivo studies. Keywords: In-silico study, SARS-CoV-2, Tiryaq-e-Wabai, Unani formulation, Crocin, Aloin A


Author(s):  
Pankaj Jain ◽  
Amit Joshi ◽  
Nahid Akhtar ◽  
Sunil Krishnan ◽  
Vikas Kaushik

Abstract Background Canine circovirus is a deadly pathogen of dogs and causes vasculitis and hemorrhagic enteritis. It causes lethal gastroenteritis in pigs, fox, and dogs. Canine circovirus genome contains two main (and opposite) transcription units which encode two open reading frames (ORFs), a replicase-associated protein (Rep) and the capsid (Cap) protein. The replicase protein and capsid protein consist of 303 amino acids and 270 amino acids respectively. Several immuno-informatics methods such as epitope screening, molecular docking, and molecular-dynamics simulations were used to craft peptide-based vaccine construct against canine circovirus. Results The vaccine construct was designed by joining the selected epitopes with adjuvants by suitable linker. The cloning and expression of the vaccine construct was also performed using in silico methods. Screening of epitopes was conducted by NetMHC server that uses ANN (Artificial neural networking) algorithm. These methods are fast and cost-effective for screening epitopes that can interact with dog leukocyte antigens (DLA) and initiate an immune response. Overall, 5 epitopes, YQHLPPFRF, YIRAKWINW, ALYRRLTLI, HLQGFVNLK, and GTMNFVARR, were selected and used to design a vaccine construct. The molecular docking and molecular dynamics simulation studies show that these epitopes can bind with DLA molecules with stability. The codon adaptation and in silico cloning studies show that the vaccine can be expressed by Escherichia coli K12 strain. Conclusion The results suggest that the vaccine construct can be useful in preventing the dogs from canine circovirus infections. However, the results need further validation by performing other in vitro and in vivo experiments.


Author(s):  
Bishajit Sarkar ◽  
Md. Asad Ullah ◽  
Yusha Araf ◽  
Mohammad Shahedur Rahman

As the number of infections and deaths caused by the recent COVID-19 pandemic is increasing dramatically day-by-day, scientists are rushing towards developing possible counter-measures to fight the deadly virus, SARS-CoV-2. Although many efforts have already been put forward for designing and developing potential vaccines, however, most of them are proved to possess negative consequences. Therefore, in this study, the methods of immunoinformatics were exploited to design novel epitope-based subunit vaccine against the SARS-CoV-2, targeting four essential proteins of the virus i.e., spike glycoprotein, nucleocapsid phosphoprotein, membrane glycoprotein, and envelope protein. The highly antigenic, non-allergenic, non-toxic, non-human homolog and 100% conserved (across other isolates from different regions of the world) epitopes were used for constructing the vaccine. In total, fourteen CTL epitopes and eighteen HTL epitopes were used to construct the vaccine. Thereafter, several in silico validations i.e., the molecular docking, molecular dynamics simulation (including the RMSF and RMSD studies), and immune simulation studies were also performed which predicted that the designed vaccine should be quite safe, effective, and stable within the biological environment. Finally, in silico cloning and codon adaptation studies were also conducted to design an effective mass production strategy of the vaccine. However, more in vivo and in vitro studies are required on the predicted vaccine to finally validate its safety and efficacy.


2020 ◽  
Author(s):  
Mustafa Alhaji Isa ◽  
Muhammad M Ibrahim

The 3-hydroquinate synthase (DHQase) is an enzyme that catalyzes the third step of the shikimate pathway in <i>Mycobacterium tuberculosis</i> (MTB), by converting 3-dehydroquinate into 3-dehydroshikimate. In this study, the novel inhibitors of DHQase from MTB was identified using in silico approach. The crystal structure of DHQase bound to 1,3,4-trihydroxy-5-(3-phenoxypropyl)-cyclohexane-1-carboxylic acid (CA) obtained from the Protein Data Bank (PDB ID: 3N76). The structure prepared through energy minimization and structure optimization. A total of 9699 compounds obtained from Zinc and PubChem databases capable of binding to DHQase and subjected to virtual screening through Lipinski’s rule of five and molecular docking analysis. Eight (8) compounds with good binding energies, ranged between ─8.99 to ─8.39kcal/mol were selected, better than the binding energy of ─4.93kcal/mol for CA and further filtered for pharmacokinetic properties (Absorption, Distribution, Metabolism, Excretion, and Toxicity or ADMET). Five compounds (ZINC14981770, ZINC14741224, ZINC14743698, ZINC13165465, and ZINC8442077) which had desirable pharmacokinetic properties selected for molecular dynamic (MD) simulation and molecular generalized born surface area (MM-GBSA) analyses. The results of the analyses showed that all the compounds formed stable and rigid complexes after the 50ns MD simulation and also had a lower binding as compared to CA. Therefore, these compounds considered as good inhibitors of MTB after in vitro and in vivo validation.”


Sign in / Sign up

Export Citation Format

Share Document