scholarly journals Ficus benghalensis as Potential Inhibitor of 5α-Reductase for Hair Growth Promotion: In Vitro, In Silico, and In Vivo Evaluation

2021 ◽  
Vol 12 ◽  
Author(s):  
Jawaria Iltaf ◽  
Sobia Noreen ◽  
Muhammad Fayyaz ur Rehman ◽  
Shazia Akram Ghumman ◽  
Fozia Batool ◽  
...  

The screening of hair follicles, dermal papilla cells, and keratinocytes through in vitro, in vivo, and histology has previously been reported to combat alopecia. Ficus benghalensis has been used conventionally to cure skin and hair disorders, although its effect on 5α-reductase II is still unknown. Currently, we aim to analyze the phytotherapeutic impact of F. benghalensis leaf extracts (FBLEs) for promoting hair growth in rabbits along with in vitro inhibition of the steroid isozyme 5α-reductase II. The inhibition of 5α-reductase II by FBLEs was assessed by RP-HPLC, using the NADPH cofactor as the reaction initiator and Minoxin (5%) as a positive control. In silico studies were performed using AutoDock Vina to visualize the interaction between 5α-reductase II and the reported phytoconstituents present in FBLEs. Hair growth in female albino rabbits was investigated by applying an oral dose of the FBLE formulation and control drug to the skin once a day. The skin tissues were examined by histology to see hair follicles. Further, FAAS, FTIR, and antioxidants were performed to check the trace elements and secondary metabolites in the FBLEs. The results of RP-HPLC and the binding energies showed that FBLEs reduced the catalytic activity of 5α-reductase II and improved cell proliferation in rabbits. The statistical analysis (p < 0.05 or 0.01) and percentage inhibition (>70%) suggested that hydroalcoholic FBLE has more potential in increasing hair growth by elongating hair follicle’s anagen phase. FAAS, FTIR, and antioxidant experiments revealed sufficient concentrations of Zn, Cu, K, and Fe, together with the presence of polyphenols and scavenging activity in FBLE. Overall, we found that FBLEs are potent in stimulating hair follicle maturation by reducing the 5α-reductase II action, so they may serve as a principal choice in de novo drug designing to treat hair loss.

Author(s):  
SANGEETA CHOUDHURY ◽  
BLR MADHAVI

Objective: The aim of this work to formulate, evaluate and compare the effectiveness of herbal creams containing extract of reishi and tea tree oil for treating hirsutism. Methods: Herbal ingredients were authenticated. Cream base was initially formulated. Three formulations of herbal cream were prepared. Reishi ethanolic extract, tea tree oil, and combination of tea tree oil and reishi extract were added to the cream base and formulated cream were named as RHC, THC and RTC respectively. In vitro evaluations on herbal creams were done for the physicochemical characteristics. In vivo studies were carried out on female Swiss Albino mice for the activity against hair growth by topical application of cream to shaved skin. The histological and morphometric evaluation was carried out. Skin irritancy study was conducted. Results: The herbal creams showed desirable physicochemical properties like pH, viscosity and spreadability. Statistical analysis for the length of hair was performed by using one way ANOVA followed by DUNNET’S post hoc test where THC and RTC were found to be significant whereas RHC showed no significant reduction of hair growth compared to control. RTC showed a significant effect at p<0.05 and hair growth reduction was significant for THC at p<0.001 compared to the control group. RTC and THC showed mild to moderate reduction in the size of the hair follicles with a reduction of sebaceous gland size in the histological analysis. Conclusion: Topical application of herbal creams to mice showed that hair growth was fastest in group RHC and was slowest in group THC and intermediate with RTC. It can be concluded that these herbal actives can be used as an effective treatment against hirsutism. Within the study period, tea tree oil was found to be more effective than reishi extract and the combination product. Further formulation studies and in vivo studies need to be carried out on reishi to assess its effectiveness against hirsutism.


PLoS ONE ◽  
2019 ◽  
Vol 14 (2) ◽  
pp. e0211901 ◽  
Author(s):  
Andreea Nissenkorn ◽  
Yael Almog ◽  
Inbar Adler ◽  
Mary Safrin ◽  
Marina Brusel ◽  
...  
Keyword(s):  
De Novo ◽  

Author(s):  
DESSY AGUSTINI ◽  
LEO VERNADESLY ◽  
DELVIANA ◽  
THEODORUS

Objectives: This research aims to determine the efficacy of compounds in robusta coffee against colorectal cancer through the inhibition of the T-cell immunoglobulin and immunoreceptor tyrosine-based inhibitory motif domain (TIGIT) receptor. Methods: This in silico study has been conducted in computing platform from June to August 2021. The selected test compounds would go through the Lipinski rule screening through the SwissADME website and the compounds that met these regulations would be docked to the TIGIT protein using AutoDock Tools and AutoDock Vina. The interactions with the highest binding energies were visualized using BIOVIA Discovery Studio 2020. The test compounds then underwent a toxicity profile analysis on the admetSAR 2.0 website. Results: All test compounds complied with the Lipinski rule. The molecular docking results showed the highest binding energy in kahweol and cafestol (−8.1 kcal/mol) compared to OMC (−7.9 kcal/mol), chlorogenic acid (−7.8 kcal/mol), caffeic acid (−6.3 kcal/mol), caffeine (−6.1 kcal/mol), trigonelline (−5.3 kcal/mol), HMF (−5.1 kcal/mol), furfuryl alcohol (−4.4 kcal/mol), and 5-fluorouracil as the comparator drug (−5.3 kcal/mol). Kahweol, cafestol, and 5-fluorouracil revealed the hydrophobic interactions and hydrogen bonds with amino acid residues in TIGIT. Kahweol and cafestol unveiled minimal toxicity prediction Conclusion: Kahweol and cafestol demonstrated the best results in inhibiting the TIGIT protein which played a role in colorectal cancer. In vitro and in vivo studies are needed to strengthen the findings of this research.


2020 ◽  
Author(s):  
Tamara Rubilar ◽  
Elena Susana Barbieri ◽  
Ayelén Gázquez ◽  
Marisa Avaro ◽  
Mercedes Vera-Piombo ◽  
...  

The SARS-CoV-2 outbreak has spread rapidly and globally generating a new coronavirus disease (COVID-19) since December 2019 that turned into a pandemic. Effective drugs are urgently needed and drug repurposing strategies offer a promising alternative to dramatically shorten the process of traditional de novo development. Based on their antiviral uses, the potential affinity of sea urchin pigments to bind main protease (Mpro) of SARS-CoV-2 was evaluated in silico. Docking analysis was used to test the potential of these sea urchin pigments as therapeutic and antiviral agents. All pigment compounds presented high molecular affinity to Mpro protein. However, the 1,4-naphtoquinones polihydroxilate (Spinochrome A and Echinochrome A) showed high affinity to bind around the Mpro´s pocket target by interfering with proper folding of the protein mainly through an H-bond with Glu166 residue. This interaction represents a potential blockage of this protease´s activity. All these results provide novel information regarding the uses of sea urchin pigments as antiviral drugs and suggest the need for further in vitro and in vivo analysis to expand all therapeutic uses against SARS-CoV-2. <br>


2021 ◽  
Author(s):  
Gideon A. Gyebi ◽  
Oludare M. Ogunyemi ◽  
Ibrahim M. Ibrahim ◽  
Saheed O. Afolabi ◽  
Joseph O. Adebayo

Abstract The high morbidity and mortality rate of Severe Acute Respiratory Syndrome CoronaVirus 2 (SARS-CoV-2) infection arises majorly from the Acute Respiratory Distress Syndrome and “cytokine storm” syndrome, which is sustained by an aberrant systemic inflammatory response and elevated pro-inflammatory cytokines. Thus, phytocompounds with broad-spectrum anti-inflammatory activity that target multiple SARS-CoV-2 proteins will enhance the development of effective drugs against the disease. In this study, an in-house library of 106 steriodal plant-derived pregnanes (PDPs) was docked in the active regions of human glucocorticoid receptors (hGRs) in a comparative molecular docking analysis. Based on the minimal binding energy and a comparative dexamethason binding mode analysis, a list of top twenty ranked PDPs docked in the agonist conformation of hGR, with binding energies ranging between -9.8 and -11.2 Kcal/mol, was obtained and analyzed for interactions with the human Janus kinases 1 and Interleukins-6 and SARS-CoV-2 3-chymotrypsin-like protease, Papain-like protease and RNA-dependent RNA polymerase. For each target protein, the top three ranked PDPs were selected. Eight PDPs (bregenin, hirundigenin, anhydroholantogenin, atratogenin A, atratogenin B, glaucogenin A, glaucogenin C and glaucogenin D) with high binding tendencies to the catalytic residues of multiple targets were identified. A high degree of structural stability was observed from the 100 ns molecular dynamics simulation analyses of glaucogenin C and hirundigenin complexes of hGR. The selected top-eight ranked PDPs demonstrated favourable druggable and in silico ADMET properties. Thus, the therapeutic potentials of glaucogenin C and hirundigenin can be explored for further in vitro and in vivo studies.


2020 ◽  
Author(s):  
Mustafa Alhaji Isa ◽  
Muhammad M Ibrahim

The 3-hydroquinate synthase (DHQase) is an enzyme that catalyzes the third step of the shikimate pathway in <i>Mycobacterium tuberculosis</i> (MTB), by converting 3-dehydroquinate into 3-dehydroshikimate. In this study, the novel inhibitors of DHQase from MTB was identified using in silico approach. The crystal structure of DHQase bound to 1,3,4-trihydroxy-5-(3-phenoxypropyl)-cyclohexane-1-carboxylic acid (CA) obtained from the Protein Data Bank (PDB ID: 3N76). The structure prepared through energy minimization and structure optimization. A total of 9699 compounds obtained from Zinc and PubChem databases capable of binding to DHQase and subjected to virtual screening through Lipinski’s rule of five and molecular docking analysis. Eight (8) compounds with good binding energies, ranged between ─8.99 to ─8.39kcal/mol were selected, better than the binding energy of ─4.93kcal/mol for CA and further filtered for pharmacokinetic properties (Absorption, Distribution, Metabolism, Excretion, and Toxicity or ADMET). Five compounds (ZINC14981770, ZINC14741224, ZINC14743698, ZINC13165465, and ZINC8442077) which had desirable pharmacokinetic properties selected for molecular dynamic (MD) simulation and molecular generalized born surface area (MM-GBSA) analyses. The results of the analyses showed that all the compounds formed stable and rigid complexes after the 50ns MD simulation and also had a lower binding as compared to CA. Therefore, these compounds considered as good inhibitors of MTB after in vitro and in vivo validation.”


Author(s):  
Tamara Rubilar ◽  
Elena Susana Barbieri ◽  
Ayelén Gázquez ◽  
Marisa Avaro ◽  
Mercedes Vera-Piombo ◽  
...  

The SARS-CoV-2 outbreak has spread rapidly and globally generating a new coronavirus disease (COVID-19) since December 2019 that turned into a pandemic. Effective drugs are urgently needed and drug repurposing strategies offer a promising alternative to dramatically shorten the process of traditional de novo development. Based on their antiviral uses, the potential affinity of sea urchin pigments to bind main protease (Mpro) of SARS-CoV-2 was evaluated in silico. Docking analysis was used to test the potential of these sea urchin pigments as therapeutic and antiviral agents. All pigment compounds presented high molecular affinity to Mpro protein. However, the 1,4-naphtoquinones polihydroxilate (Spinochrome A and Echinochrome A) showed high affinity to bind around the Mpro´s pocket target by interfering with proper folding of the protein mainly through an H-bond with Glu166 residue. This interaction represents a potential blockage of this protease´s activity. All these results provide novel information regarding the uses of sea urchin pigments as antiviral drugs and suggest the need for further in vitro and in vivo analysis to expand all therapeutic uses against SARS-CoV-2. <br>


2001 ◽  
Vol 25 (3) ◽  
pp. 213-218 ◽  
Author(s):  
Akio Shirai ◽  
Jun-ichi Ikeda ◽  
Sagano Kawashima ◽  
Tatsuya Tamaoki ◽  
Toshikazu Kamiya

Sign in / Sign up

Export Citation Format

Share Document