scholarly journals Structural characterisation of a nanobody derived from a naïve library that neutralises SARS-CoV-2

Author(s):  
Jiangdong Huo ◽  
Audrey Le Bas ◽  
Reinis R. Ruza ◽  
Helen M.E. Duyvesteyn ◽  
Halina Mikolajek ◽  
...  

Abstract The SARS-CoV-2 virus is more transmissible than previous coronaviruses and causes a more serious illness than seasonal flu. The SARS-CoV-2 receptor binding domain (RBD) of the Spike protein binds to the human angiotensin-converting enzyme 2 (ACE2) receptor as a prelude to viral entry into the cell. Using a naïve llama single chain nanobody library and PCR maturation we have produced a nanobody, H11-D4, with a KD 9 nM for RBD that blocks the binding of RBD to the ACE2. Single particle cryo-electron microscopy revealed that H11-D4 binds to each of the three RBDs in the Spike trimer. The 1.8 Å crystal structure of the H11-D4 – RBD complex has illuminated the molecular interactions that drive the high affinity. H11-D4 binds to an epitope on RBD that overlaps with the ACE2 binding, explaining the blocking of ACE2 binding. The nanobody showed potent neutralising activity against live SARS-CoV-2 virus.

2020 ◽  
Author(s):  
Matthew D. Beasley ◽  
Sanja Aracic ◽  
Fiona M. Gracey ◽  
Ruban Kannan ◽  
Avisa Masarati ◽  
...  

AbstractAntibodies with high affinity against the receptor binding domain (RBD) of the SARS-CoV-2 S1 ectodomain were identified from screens using the Retained Display™ (ReD) platform employing a 1 × 1011 clone single-chain antibody (scFv) library. Numerous unique scFv clones capable of inhibiting binding of the viral S1 ectodomain to the ACE2 receptor in vitro were characterized. To maximize avidity, selected clones were reformatted as bivalent diabodies and monoclonal antibodies (mAb). The highest affinity mAb completely neutralized live SARS-CoV-2 virus in cell culture for four days at a concentration of 6.7 nM, suggesting potential therapeutic and/or prophylactic use. Furthermore, scFvs were identified that greatly increased the interaction of the viral S1 trimer with the ACE2 receptor, with potential implications for vaccine development.


mSphere ◽  
2020 ◽  
Vol 5 (5) ◽  
Author(s):  
James R. Byrnes ◽  
Xin X. Zhou ◽  
Irene Lui ◽  
Susanna K. Elledge ◽  
Jeff E. Glasgow ◽  
...  

ABSTRACT As severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to spread around the world, there is an urgent need for new assay formats to characterize the humoral response to infection. Here, we present an efficient, competitive serological assay that can simultaneously determine an individual’s seroreactivity against the SARS-CoV-2 Spike protein and determine the proportion of anti-Spike antibodies that block interaction with the human angiotensin-converting enzyme 2 (ACE2) required for viral entry. In this approach based on the use of enzyme-linked immunosorbent assays (ELISA), we present natively folded viral Spike protein receptor-binding domain (RBD)-containing antigens via avidin-biotin interactions. Sera are then competed with soluble ACE2-Fc, or with a higher-affinity variant thereof, to determine the proportion of ACE2 blocking anti-RBD antibodies. Assessment of sera from 144 SARS-CoV-2 patients ultimately revealed that a remarkably consistent and high proportion of antibodies in the anti-RBD pool targeted the epitope responsible for ACE2 engagement (83% ± 11%; 50% to 107% signal inhibition in our largest cohort), further underscoring the importance of tailoring vaccines to promote the development of such antibodies. IMPORTANCE With the emergence and continued spread of the SARS-CoV-2 virus, and of the associated disease, coronavirus disease 2019 (COVID-19), there is an urgent need for improved understanding of how the body mounts an immune response to the virus. Here, we developed a competitive SARS-CoV-2 serological assay that can simultaneously determine whether an individual has developed antibodies against the SARS-CoV-2 Spike protein receptor-binding domain (RBD) and measure the proportion of these antibodies that block interaction with the human angiotensin-converting enzyme 2 (ACE2) required for viral entry. Using this assay and 144 SARS-CoV-2 patient serum samples, we found that a majority of anti-RBD antibodies compete for ACE2 binding. These results not only highlight the need to design vaccines to generate such blocking antibodies but also demonstrate the utility of this assay to rapidly screen patient sera for potentially neutralizing antibodies.


2020 ◽  
Author(s):  
Ankush Garg ◽  
Gaurav Kumar ◽  
Sharmistha Sinha

AbstractnCOVID-19 virus makes cellular entry using its spike protein protruding out on its surface. Angiotensin converting enzyme 2 receptor has been identified as a receptor that mediates the viral entry by binding with the receptor binding motif of spike protein. In the present study, we elucidate the significance of N-terminal domain of spike protein in spike-receptor interactions. Recent clinical reports indicate a link between nCOVID-19 infections with patient comorbidities. The underlying reason behind this relationship is not clear. Using molecular docking, we study the affinity of the nCOVID-19 spike protein with cell receptors overexpressed under disease conditions. Our results suggest that certain cell receptors such as DC/L-SIGN, DPP4, IL22R and ephrin receptors could act as potential receptors for the spike protein. The receptor binding domain of nCOVID-19 is more flexible than that of SARS-COV and has a high propensity to undergo phase separation. Higher flexibility of nCOVID-19 receptor binding domain might enable it to bind multiple receptor partners. Further experimental work on the association of these receptors with spike protein may help us to explain the severity of nCOVID-19 infection in patients with comorbidities.


Author(s):  
Juan J de Pablo ◽  
Walter Alvarado ◽  
Fabian Bylehn ◽  
Cintia Menendez ◽  
Gustavo Perez

The interactions between the receptor binding domain (RBD) of SARS-CoV-2 and the angiotensin- converting enzyme 2 (ACE2) are crucial for viral entry and subsequent replication. Given the large and featureless...


2021 ◽  
Author(s):  
Yuning Shang ◽  
Feixiang Chen ◽  
Shasha Li ◽  
Lijuan Song ◽  
Yunzhen Gao ◽  
...  

Abstract Background: The Interaction between severe acute respiratory syndrome coronavirus 2 ( SARS-CoV-2 ) spike protein with Angiotensin converting enzyme 2 (ACE2) on the host cells is a crucial step for the viral entry and infection. Therefore, investigating the molecular mechanism underlying the interaction is of great importance for the prevention of the infection of SARS-CoV-2. In this study, we aimed to establish a virus-free in vitro system to study the interaction between the spike protein and host cells of SARS-CoV-2.Results: Our results show that ACE2-overexpressing HEK293T cells are captured by immobilized spike protein, and the cell capturing process can be inhibited by the receptor binding domain of the spike protein or antibodies against S protein. Furthermore, spike protein variant with D614G mutant show a higher cell capturing ability than wild type spike protein. In addition, the captured cells can be eluted as living cells for further investigation.Conclusions: This study provides a new in vitro system for investigating the interaction between SARS-CoV-2 and host cells and purifying ACE2-expressing cells.


2020 ◽  
Author(s):  
Taha Azad ◽  
Ragunath Singaravelu ◽  
Zaid Taha ◽  
Stephen Boulton ◽  
Mathieu J.F. Crupi ◽  
...  

Abstract The ongoing COVID-19 pandemic has highlighted the` immediate need for the development of antiviral therapeutics targeting different stages of the SARS-CoV-2 lifecycle. We developed a bioluminescence-based biosensor to interrogate the interaction between the SARS-CoV-2 viral spike protein and its host entry receptor, angiotensin-converting enzyme 2 (ACE2). The biosensor assay is based on a Nanoluciferase complementation reporter, composed of two subunits, Large BiT and Small BiT, fused to the spike receptor-binding domain (RBD) of the SARS-CoV-2 S protein and ACE2 ectodomain, respectively. Using this biosensor, we uncovered a critical role for glycosylation of asparagine residues within the RBD in mediating successful binding to the cellular ACE2 receptor and subsequent virus infection. Our findings support RBD glycosylation as a therapeutic and vaccine target to blunt SARSCoV- 2 infections.


2021 ◽  
Vol 22 (15) ◽  
pp. 8226
Author(s):  
John Tsu-An Hsu ◽  
Chih-Feng Tien ◽  
Guann-Yi Yu ◽  
Santai Shen ◽  
Yi-Hsuan Lee ◽  
...  

Increasing evidence suggests that elderly people with dementia are vulnerable to the development of severe coronavirus disease 2019 (COVID-19). In Alzheimer’s disease (AD), the major form of dementia, β-amyloid (Aβ) levels in the blood are increased; however, the impact of elevated Aβ levels on the progression of COVID-19 remains largely unknown. Here, our findings demonstrate that Aβ1-42, but not Aβ1-40, bound to various viral proteins with a preferentially high affinity for the spike protein S1 subunit (S1) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the viral receptor, angiotensin-converting enzyme 2 (ACE2). These bindings were mainly through the C-terminal residues of Aβ1-42. Furthermore, Aβ1-42 strengthened the binding of the S1 of SARS-CoV-2 to ACE2 and increased the viral entry and production of IL-6 in a SARS-CoV-2 pseudovirus infection model. Intriguingly, data from a surrogate mouse model with intravenous inoculation of Aβ1-42 show that the clearance of Aβ1-42 in the blood was dampened in the presence of the extracellular domain of the spike protein trimers of SARS-CoV-2, whose effects can be prevented by a novel anti-Aβ antibody. In conclusion, these findings suggest that the binding of Aβ1-42 to the S1 of SARS-CoV-2 and ACE2 may have a negative impact on the course and severity of SARS-CoV-2 infection. Further investigations are warranted to elucidate the underlying mechanisms and examine whether reducing the level of Aβ1-42 in the blood is beneficial to the fight against COVID-19 and AD.


2021 ◽  
Author(s):  
Gideon Schreiber ◽  
Jiri Zahradník ◽  
Shir Marciano ◽  
Maya Shemesh ◽  
Eyal Zoler ◽  
...  

Abstract SARS-CoV-2 is continually evolving, with more contagious mutations spreading rapidly. Using in vitro evolution to affinity maturate the receptor-binding domain (RBD) of the spike protein towards ACE2 resulted in the more contagious mutations, S477N, E484K, and N501Y, to be among the first selected, explaining the convergent evolution of the “European” (20E-EU1), “British” (501.V1),”South African” (501.V2), and Brazilian variants (501.V3). Plotting the binding affinity to ACE2 of all RBD mutations against their incidence in the population shows a strong correlation between the two. Further in vitro evolution enhancing binding by 600-fold provides guidelines towards potentially new evolving mutations with even higher infectivity. For example, Q498R epistatic to N501Y. Nevertheless, the high-affinity RBD is also an efficient drug, inhibiting SARS-CoV-2 infection. The 2.9Å Cryo-EM structure of the high-affinity complex, including all rapidly spreading mutations, provides a structural basis for future drug and vaccine development and for in silico evaluation of known antibodies.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Qi Yang ◽  
Thomas A Hughes ◽  
Anju Kelkar ◽  
Xinheng Yu ◽  
Kai Cheng ◽  
...  

The Spike protein of SARS-CoV-2, its receptor-binding domain (RBD), and its primary receptor ACE2 are extensively glycosylated. The impact of this post-translational modification on viral entry is yet unestablished. We expressed different glycoforms of the Spike-protein and ACE2 in CRISPR-Cas9 glycoengineered cells, and developed corresponding SARS-CoV-2 pseudovirus. We observed that N- and O-glycans had only minor contribution to Spike-ACE2 binding. However, these carbohydrates played a major role in regulating viral entry. Blocking N-glycan biosynthesis at the oligomannose stage using both genetic approaches and the small molecule kifunensine dramatically reduced viral entry into ACE2 expressing HEK293T cells. Blocking O-glycan elaboration also partially blocked viral entry. Mechanistic studies suggest multiple roles for glycans during viral entry. Among them, inhibition of N-glycan biosynthesis enhanced Spike-protein proteolysis. This could reduce RBD presentation on virus, lowering binding to host ACE2 and decreasing viral entry. Overall, chemical inhibitors of glycosylation may be evaluated for COVID-19.


Sign in / Sign up

Export Citation Format

Share Document