scholarly journals Effects of land conversion on soil microbial community structure and diversity

2020 ◽  
Author(s):  
Tong Zhang ◽  
Yufei Liu ◽  
xin Sui ◽  
fuqiang Song

Abstract Background : To study the impact of land-use change on soil microbial community structure and diversity in Northeast China, three typical land-use types (plough, grassland, and forest), grassland change to forest land and grassland change to plough, in the Qiqihar region of Heilongjiang Province were taken as research objects. Methods : MiSeq high-throughput sequencing technology based on bacterial 16S rRNA and fungal ITS rRNA was used to study the above community structure of soil bacteria and fungi and to explore the relationship between soil bacteria and soil environmental factors. Results : The results showed that the dominant bacterial phyla changed from Actinobacteria to Acidobacteria , the dominant fungal phyla changed from Ascomycetes to Basidiomycetes , and the ECM functional group increased significantly after the grassland was completely changed to forest land. After the grassland was changed to plough, the dominant phyla changed from Actinomycetes to Proteobacteria . The functional groups of pathogens and parasites increased significantly. There was no significant difference in the diversity of soil bacterial communities, and the diversity of fungal communities increased significantly. CCA showed that pH, MC, NO 3 - -N, TP and AP of soil were important factors affecting the composition of soil microbial communities, and changes in land-use patterns changed the physical and chemical properties of soils, thereby affecting the structure and diversity of microbial communities. Conclusions : Our research results clarify the impact of changes in land use on the characteristics of soil microbial communities and provide basic data on the healthy use of land.

2020 ◽  
Author(s):  
Tong Zhang ◽  
Yufei Liu ◽  
Xin Sui ◽  
Fuqiang Song

Abstract Background: To study the impact of land-use change on soil microbial community structure and diversity in Northeast China, three typical land-use types (plough, grassland, and forest), from grassland change to forest land and grassland change to plough, in the Qiqihar region of Heilongjiang Province were taken as research objects. Methods: MiSeq high-throughput sequencing technology based on bacterial 16S rRNA and fungal ITS rRNA was used to study the above community structure of soil bacteria and fungi and to explore the relationship between soil bacteria and soil environmental factors. Results: The results showed that there was no significant difference in soil bacterial community diversity and fungal community diversity after the grassland was completely changed to forest land. The dominant bacterial phylum changed from Actinobacteria to Acidobacteria, the dominant fungal phylum changed from Ascomycetes to Basidiomycetes, and the ECM functional group increased significantly. After the grassland was changed to plough, there was no significant difference in the diversity of soil bacterial communities, and the diversity of fungal communities increased significantly. The dominant phylum changed from Actinomycetes to Proteobacteria. The dominant phylum was still Ascomycetes, and the functional groups of pathogens and parasites increased significantly. CCA showed that soil pH, MC, NO3--N, TP and AP were important factors affecting the composition of soil microbial communities, and changes in land-use patterns changed the physical and chemical properties of soils, thereby affecting the structure and diversity of microbial communities. Conclusions: Our research results clarify the impact of changes in land use on the characteristics of soil microbial communities and provide basic data on the healthy use of land.


2018 ◽  
Vol 156 (7) ◽  
pp. 857-864 ◽  
Author(s):  
H. M. Tang ◽  
Y. L. Xu ◽  
X. P. Xiao ◽  
C. Li ◽  
W. Y. Li ◽  
...  

AbstractThe response of soil microbial communities to soil quality changes is a sensitive indicator of soil ecosystem health. The current work investigated soil microbial communities under different fertilization treatments in a 31-year experiment using the phospholipid fatty acid (PLFA) profile method. The experiment consisted of five fertilization treatments: without fertilizer input (CK), chemical fertilizer alone (MF), rice (Oryza sativaL.) straw residue and chemical fertilizer (RF), low manure rate and chemical fertilizer (LOM), and high manure rate and chemical fertilizer (HOM). Soil samples were collected from the plough layer and results indicated that the content of PLFAs were increased in all fertilization treatments compared with the control. The iC15:0 fatty acids increased significantly in MF treatment but decreased in RF, LOM and HOM, while aC15:0 fatty acids increased in these three treatments. Principal component (PC) analysis was conducted to determine factors defining soil microbial community structure using the 21 PLFAs detected in all treatments: the first and second PCs explained 89.8% of the total variance. All unsaturated and cyclopropyl PLFAs except C12:0 and C15:0 were highly weighted on the first PC. The first and second PC also explained 87.1% of the total variance among all fertilization treatments. There was no difference in the first and second PC between RF and HOM treatments. The results indicated that long-term combined application of straw residue or organic manure with chemical fertilizer practices improved soil microbial community structure more than the mineral fertilizer treatment in double-cropped paddy fields in Southern China.


el–Hayah ◽  
2012 ◽  
Vol 1 (4) ◽  
Author(s):  
Prihastuti Prihastuti

<p>Soils are made up of organic and an organic material. The organic soil component contains all the living creatures in the soil and the dead ones in various stages of decomposition.  Biological activity in soil helps to recycle nutrients, decompose organic matter making nutrient available for plant uptake, stabilize humus, and form soil particles.<br />The extent of the diversity of microbial in soil is seen to be critical to the maintenance of soil health and quality, as a wide range of microbial is involved in important soil functions.  That ecologically managed soils have a greater quantity and diversity of soil microbial. The two main drivers of soil microbial community structure, i.e., plant type and soil type, are thought to exert their function in a complex manner. The fact that in some situations the soil and in others the plant type is the key factor determining soil microbial diversity is related to their complexity of the microbial interactions in soil, including interactions between microbial and soil and microbial and plants. <br />The basic premise of organic soil stewardship is that all plant nutrients are present in the soil by maintaining a biologically active soil environment. The diversity of microbial communities has on ecological function and resilience to disturbances in soil ecosystems. Relationships are often observed between the extent of microbial diversity in soil, soil and plant quality and ecosystem sustainability. Agricultural management can be directed toward maximizing the quality of the soil microbial community in terms of disease suppression, if it is possible to shift soil microbial communities.</p><p>Keywords: structure, microbial, implication, sustainable agriculture<br /><br /></p>


2014 ◽  
Vol 955-959 ◽  
pp. 3635-3639 ◽  
Author(s):  
Ji Hua Wang ◽  
Xue Gong ◽  
Jian Fei Guan ◽  
Hui Yan Xing

The reclaimed water treated in a Harbin recycled water plant has been taken as a target of research, by using microbial traditional culture method and tablet coated counting method, discussing the influence of the reclaimed water irrigation on soil microbial community structure through the method of short-term indoor simulated soil column irrigation. The results shows that the reclaimed water irrigation can significantly increase the quantity of bacteria and actinomycetes in the surface 0-20 cm layer soil, but it has little affect on 20-40 cm and 40-60 cm layer soil. Microbial community structure and diversity were changed relatively with the irrigation of reclaimed water, which embodied the increase or decrease of dominant and subdominant groups, the disappearance of non-dominant groups sensitive to reclaimed water, the appear or disappear of the other part of the occasional groups.


1999 ◽  
Vol 89 (10) ◽  
pp. 920-927 ◽  
Author(s):  
Mark Mazzola

Changes in the composition of soil microbial communities and relative disease-suppressive ability of resident microflora in response to apple cultivation were assessed in orchard soils from a site possessing trees established for 1 to 5 years. The fungal community from roots of apple seedlings grown in noncultivated orchard soil was dominated by isolates from genera commonly considered saprophytic. Plant-pathogenic fungi in the genera Phytophthora, Pythium, and Rhizoctonia constituted an increasing proportion of the fungal community isolated from seedling roots with increasing orchard block age. Bacillus megaterium and Burkholderia cepacia dominated the bacterial communities recovered from noncultivated soil and the rhizosphere of apple seedlings grown in orchard soil, respectively. Populations of the two bacteria in their respective habitats declined dramatically with increasing orchard block age. Lesion nematode populations did not differ among soil and root samples from orchard blocks of different ages. Similar changes in microbial communities were observed in response to planting noncultivated orchard soil to five successive cycles of ‘Gala’ apple seedlings. Pasteurization of soil had no effect on apple growth in noncultivated soil but significantly enhanced apple growth in third-year orchard block soil. Seedlings grown in pasteurized soil from the third-year orchard block were equal in size to those grown in noncultivated soil, demonstrating that suppression of plant growth resulted from changes in the composition of the soil microbial community. Rhizoctonia solani anastomosis group 5 (AG 5) had no effect on growth of apple trees in noncultivated soil but significantly reduced the growth of apple trees in soil from third-year orchard soil. Changes in the ability of the resident soil microflora to suppress R. solani AG 5 were associated with reductions in the relative populations of Burkholderia cepacia and Pseudomonas putida in the rhizosphere of apple.


Author(s):  
Lanying Ma ◽  
Fernando Igne Rocha ◽  
Jaejin Lee ◽  
Jinlyung Choi ◽  
Mauricio Tejera ◽  
...  

Yield of the perennial grass Miscanthus × giganteus has shown an inconsistent and unpredictable response to nitrogen (N) fertilizer, yet fertilization underpins the crop’s environmental and economic sustainability. The interactions among soil microbial communities, N availability, and M. × giganteus and management may explain changes in plant productivity. In this study, soil samples from different stand ages of M. × giganteus in a replicated chronosequence field trial were used to investigate the effects of stand age and N fertilizer rates on microbial community structure. We hypothesized that there is a definable M. × giganteus soil microbiome and that this community varies significantly with stand age and fertilization. Our results showed that the main phyla in soil microbial communities, regardless of plant age, are similar but microbial community structures are significantly different. The variation in observed microbial communities generally decreases in older stand ages. The amount of N fertilizer applied also affected the microbial community structure associated with different aged M. × giganteus. Specifically, the relative abundance of Proteobacteria (Alphaproteobacteria and Gammaproteobacteria) and Acidobacteria (Subgroup Gp1) increased shortly after fertilization and were more associated with younger M. × giganteus. Further, our results show a significant relationship between bacterial alpha diversity and fertilization rates and that this response is also impacted by stand age. Overall, our results emphasize linkages between microbial community structure, plant age, and fertilization in M. × giganteus.


2020 ◽  
Author(s):  
Ruth Schmidt ◽  
Xiao-Bo Wang ◽  
Paolina Garbeva ◽  
Étienne Yergeau

AbstractNitrapyrin is one of the most common nitrification inhibitors that are used to retain N in the ammonia form in soil to improve crop yields and quality. Whereas the inhibitory effect of nitrapyrin is supposedly specific to ammonia oxidizers, in view of the keystone role of this group in soils, nitrapyrin could have far-reaching impacts. Here, we tested the hypothesis that nitrapyrin leads to large shifts in soil microbial community structure, composition, diversity and functions, beyond its effect on ammonia-oxidizers. To test this hypothesis, we set-up a field experiment where wheat (Triticum aestivum cv. AC Walton) was fertilized with ammonium nitrate (NH4NO3) and supplemented or not with nitrapyrin. Rhizosphere and bulk soils were sampled twice, DNA was extracted, the 16S rRNA gene and ITS region were amplified and sequenced to follow shifts in archaeal, bacterial and fungal community structure, composition and diversity. To assess microbial functions, several genes involved in the nitrogen cycle were quantified by real-time qPCR and volatile organic compounds (VOCs) were trapped in the rhizosphere at the moment of sampling. As expected, sampling date and plant compartment had overwhelming effects on the microbial communities. However, within these strong effects, we found statistically significant effects of nitrapyrin on the relative abundance of Thaumarchaeota, Proteobacteria, Nitrospirae and Basidiomycota, and on several genera. Nitrapyrin also significantly affected bacterial and fungal community structure, and the abundance of all the N-cycle gene tested, but always in interaction with sampling date. In contrast, nitrapyrin had no significant effect on the emission of VOCs, where only sampling date significantly influenced the profiles observed. Our results point out far-reaching effects of nitrapyrin on soil and plant associated microbial communities, well beyond its predicted direct effect on ammonia-oxidizers. In the longer term, these shifts might counteract the positive effect of nitrapyrin on crop nutrition and greenhouse gas emissions.


2021 ◽  
Vol 237 ◽  
pp. 01010
Author(s):  
Tian-Peng Gao ◽  
Jing-Wen Fu ◽  
Ming-Bo Zuo ◽  
Yu-Bing Liu ◽  
Dang-Hui Xu ◽  
...  

Five different land use types (desert, farmland, mining park, slag heap and tailing dam) were selected as variables around the Jinchuan Cu-Ni mining area in Jinchang, Gansu Province in the present study. The Atriplex canescens (Pursh) Nutt.’s rhizosphere bacterial abundance, diversity and community composition were examined taking advantage of High-throughput sequencing technology to discuss the effect of soil physicochemical properties on soil microbial community structure. The result indicated that the phylum Proteobacteria and Firmicutes was the most dominant taxon in desert, farmland and mining park, with a high abundance more than 30%. The phylum Proteobacteria was the most dominant taxon in slag heap and tailing dam, with a high abundance more than 40%. The tailing dam had the highest bacterial Chao indexes and the farmland had the highest bacterial Observed species indexes, Shannon indexes and Simpson indexes. Observed species indexes and Shannon indexes between the five sites were significantly different. The redundancy analysis and principal component analysis showed that the main environmental factors caused the different of rhizosphere bacterial community structure in five land use types were Mg, Ca, Cu, TN and moisture, followed by Ni, Cr, K, Pb, Zn content and pH. Hence, the result indicates that land use and soil environmental factors had significant impact on the diversity of soil microbial community structure.


Sign in / Sign up

Export Citation Format

Share Document