scholarly journals Drilling Vibration Modes and Penetration Rate Modeling using Artificial Neural Network and Multiple Linear Regression Analysis in Khoman Formation at the Egyptian Western Desert

Author(s):  
Sherif A. Ezz ◽  
Mohamed S. Farahat ◽  
Said Kamel ◽  
Ahmed Z. Nouh

Abstract Drill string vibrations are one of the most serious problems encountered while drilling as the bit and drill string interaction with formations under certain drilling conditions usually induces complex shocks and vibrations into the drill string components resulting in premature failure of the equipment and reduced drilling penetration rate. In severe cases where shocks and vibrations accumulated into drill string till exceeded its maximum yield or torsional strength, fatigue will occur and thereby increase the field development costs associated with replacing damaged components, fishing jobs, lost-in-hole situations, and sidetracks. Thus, real-time monitoring for downhole generated vibrations and accordingly adjusting drilling parameters including weight on bit, rotary speed, and circulation rate play a vital role in reducing the severity of these undesirable conditions. Vibration optimization must be done incorporation with the penetration rate, as a minimum economical penetration rate is required by the operator. In this study, three penetration rate and vibration level models were developed for axial, lateral, and stick-slip drilling modes using both MATLAB™ Software neural network and multiple regression analysis. It is found that the three models' results for vibration level and penetration rate; as compared with those recorded drilling data; showed an excellent match within an acceptable error of average correlation coefficient (R) over 0.95. The prediction of penetration rate and vibration level is thoroughly investigated in different axial, lateral, and stick-slip vibration drilling modes to be able to best select the optimum safe drilling zone. It is found that the axial vibration could be dampened by gradually increasing the weight on bit and increasing rotary speed while both the lateral and torsional vibrations are enhanced by increasing the rotary speed and decreasing the weight on bit.

1991 ◽  
Vol 113 (1) ◽  
pp. 38-43 ◽  
Author(s):  
Yao-Qun Lin ◽  
Yu-Hwa Wang

The stick-slip vibration is introduced as a new mechanism to explain the large amplitude torsional oscillation of the drill strings in oil and gas well drillings. A record of field data is identified and simulated according to the new mechanism. The analytical results derived from the numerical simulation agree with the field data with 95.6 percent accuracy. The physical phenomenon of the stick-slip vibration of drill string is explained by initiating a phase trace in the phase plane. The beating phenomenon in drilling is interpreted in terms of stick-slip vibration. The effects of viscous damping, rotary speed and natural frequency on the stick-slip vibration are discussed.


2017 ◽  
Vol 31 (10) ◽  
pp. 4589-4597 ◽  
Author(s):  
Liping Tang ◽  
Xiaohua Zhu ◽  
Xudong Qian ◽  
Changshuai Shi

Author(s):  
Massinissa Derbal ◽  
Mohamed Gharib ◽  
Shady S Refaat ◽  
Alan Palazzolo ◽  
Sadok Sassi

Drillstring–borehole interaction can produce severely damaging vibrations. An example is stick–slip vibration, which negatively affects drilling performance, tool integrity and completion time, and costs. Attempts to mitigate stick–slip vibration typically use passive means and/or change the operation parameters, such as weight on bit and rotational speed. Automating the latter approach, by means of feedback control, holds the promise of quicker and more effective mitigation. The present work presents three separate fractional-order controllers for mitigating drillstring slip–stick vibrations. For the sake of illustration, the drillstring is represented by a torsional vibration lumped parameter model with four degrees of freedom, including parameter uncertainty. The robustness of these fractional-order controllers is compared with traditional proportional-integral-derivative controllers under variation of the weight on bit and the drill bit’s desired rotary speed. The results confirm the proposed controllers effectiveness and feasibility, with rapid time response and less overshoot than conventional proportional-integral-derivative controllers.


1982 ◽  
Vol 104 (2) ◽  
pp. 108-120 ◽  
Author(s):  
I. E. Eronini ◽  
W. H. Somerton ◽  
D. M. Auslander

A rock drilling model is developed as a set of ordinary differential equations describing discrete segments of the drilling rig, including the bit and the rock. The end segment consists of a description of the bit as a “nonideal” transformer and a characterization of the rock behavior. The effects on rock drilling of bottom hole cleaning, drill string-borehole interaction, and tooth wear are represented in the model. Simulated drilling under various conditions, using this model, gave results which are similar to those found in field and laboratory drilling performance data. In particular, the model predicts the expected relationships between drilling rate and the quantities, weight on bit, differential mud pressure, and rotary speed. The results also suggest that the damping of the longitudinal vibrations of the drill string could be predominantly hydrodynamic as opposed to viscous. Pulsations in the mud flow are found to introduce “percussive” effects in the bit forces which seem to improve the penetration rate. However, it is known from field observations that drill pipe movements, if strong enough, may induce mud pressure surges which can cause borehole and circulation problems. Bit forces and torques are shown to be substantially coupled and the influence of certain rock parameters on variables which are measurable either at the bit or on the surface support the expectation that these signals can furnish useful data on the formation being drilled. Other results, though preliminary, show that the effects of the lateral deflections of the drill string may be large for the axial bit forces and significant for the torsional vibrations. For the latter, the unsteady nature of the rotation above the bit increases and the resistance to rotation due to rubbing contact between the drill string and the wellbore accounts for very large power losses between the surface and the bit.


Author(s):  
Chong Chen ◽  
Shimin Zhang ◽  
Hang Zhang ◽  
Xiaojun Li ◽  
Zichen He

During the drilling process, the non-linear contacts between the bit and the bottom hole, the drill string and the borehole wall can cause the bit’s stick-slip vibration, which will shorten the life of the bit and even endanger the safety of the drill string. The severity of stick-slip vibration of a bit can be identified by the rotary speed of a bit, the triaxial accelerations of the drill string, the wellhead torque and other parameters measured by the measuring while drilling (MWD) tools in the downhole and devices on the surface. To evaluate the level of stick-slip vibration, this paper proposes a risk assessment method of sick-slip vibration based on backpropagation neural network (BPNN). According to the time and frequency domain analysis of the data collected from simulation, the feature parameters of the time and frequency domains of signals are extracted, and then the kernel principal component analysis (KPCA) is applied to reduce dimensions. Consequently, the feature vectors can be obtained, which become the input parameters of the BPNN. Based on BPNN algorithm, the stick-slip vibration of the bit is determined, and the classification of stick-slip vibration strength is carried out. The results show that this method can effectively identify the severity of stick-slip vibration of a bit. Therefore, this method is valid to evaluate the stick-slip vibration of a bit, which will help drillers adjust the drilling parameters practically according to the severity of vibration, so as to reduce the risks of stick-slip vibration during drilling and improve the efficiency and safety of drilling operation.


2021 ◽  
Author(s):  
Efe Mulumba Ovwigho ◽  
Saleh Al Marri ◽  
Abdulaziz Al Hajri

Abstract On a Deep Gas Project in the Middle East, it is required to drill 3500 ft of 8-3/8" deviated section and land the well across highly interbedded and abrasive sandstone formations with compressive strength of 15 - 35 kpsi. While drilling this section, the drill string was constantly stalling and as such could not optimize drilling parameters. Due to the resulting low ROP, it was necessary to optimize the Drill string in order to enhance performance. Performed dynamic BHA modelling which showed current drill string was not optimized for drilling long curved sections. Simulation showed high buckling levels across the 4" drill pipe and not all the weight applied on surface was transmitted to the bit. The drilling torque, flowrate and standpipe pressures were limited by the 4" drill pipe. This impacted the ROP and overall drilling performance. Proposed to replace the 4" drill pipe with 5-1/2" drill pipe. Ran the simulations and the model predicted improved drill string stability, better transmission of weights to the bit and increased ROP. One well was assigned for the implementation. Ran the optimized BHA solution, able to apply the maximum surface weight on bit recommended by the bit manufacturer, while drilling did not observe string stalling or erratic torque. There was also low levels of shocks and vibrations and stick-slip. Doubled the on-bottom ROP while drilling this section with the same bit. Unlike wells drilled with the previous BHA, on this run, observed high BHA stability while drilling, hole was in great shape while POOH to the shoe after drilling the section, there were no tight spots recorded while tripping and this resulted in the elimination of the planned wiper trip. Decision taken to perform open hole logging operation on cable and subsequently run 7-in liner without performing a reaming trip. This BHA has been adopted on the Project and subsequent wells drilled with this single string showed similar performance. This solution has led to average savings of approximately 120 hours per well drilled subsequently on this field. This consist of 80 hours due to improved ROP, 10 hrs due to the elimination of wiper trip and a further 30 hrs from optimized logging operation on cable. In addition, wells are now delivered earlier due to this innovative solution. This paper will show how simple changes in drill string design can lead to huge savings in this current climate where there is a constant push for reduction in well times, well costs and improved well delivery. It will explain the step-by-step process that was followed prior to implementing this innovative solution.


2021 ◽  
Author(s):  
Huijuan Guo ◽  
Huaidong Luo ◽  
Guodong Zhan ◽  
Baodong Wang ◽  
Shuo Zhu

Abstract With highly deviated wells and horizontal wells are widely used in the oil industry. The large slope well sections and long horizontal well sections will lead to a sharp increase of the drill string torque and friction, which may reduce the drilling efficiency, and even lead to accidents. Therefore, real-time and accurate analysis of drill string’s torque and friction is an urgent problem facing by the modern drilling technology. The paper established a real-time friction prediction model that combines machine learning methods with drill string mechanical mechanism analysis model. Based on 84000 sets of field monitoring data obtained on-site, a regular data training set for weight on bit (WOB) and torque prediction was constructed with 23 types of time-series related parameters and 10 types of timing independent parameters. Relationships between time-series related parameters and timing independent parameters with the weight on bit and torque were trained to utilize long and short-term memory (LSTM) neural network and muti-layer back propagation (BP) network respectively. The new developed LSTM-BP neural network achieves high-precision prediction results of WOB and torque with a relative error of less than 14%. Based on derived WOB and torque prediction results, a theoretical mechanical analysis model of the entire drill string was adopted in this paper to develop the quantitative relation between WOB and torque with the friction coefficient of the drill string and oil casing. Suitable friction coefficients along the drill string can be finally obtained by solving the equilibrium function between predicted WOB, torque and measured hook load, rotary-table torque via an iteration algorithm. A case study was performed finally using the proposed intelligent analysis method to calculate the friction coefficients. This proposed methodology can be referenced to decrease the sticking risks and improve the drilling efficiency, which can finally increase the extension limit of horizontal wells in complex strata.


2019 ◽  
Vol 10 (4) ◽  
pp. 1657-1674
Author(s):  
Ali K. Darwesh ◽  
Thorkild M. Rasmussen ◽  
Nadhir Al-Ansari

AbstractOil well drilling data from 23 oil wells in northern Iraq are analyzed and optimized controllable drilling parameters are found. The most widely used Bourgoyne and Young (BY) penetration rate model have been chosen for roller cone bits, and parameters were extracted to adjust for other bit types. In this regard, the collected data from real drilling operation have initially been averaged in short clusters based on changes in both lithology and bottom hole assemblies. The averaging was performed to overcome the issues related to noisy data negative effect and the lithological homogeneity assumption. Second, the Dmitriy Belozerov modifications for polycrystalline diamond bits compacts have been utilized to correct the model to the bit weight. The drilling formulas were used to calculate other required parameters for the BYM. Third, threshold weight for each cluster was determined through the relationship between bit weight and depth instead of the usual Drill of Test. Fourth, coefficients of the BYM were calculated for each cluster using multilinear regression. Fifth, a new model was developed to find the optimum drill string rotation based on changes in torque and bit diameter with depth. The above-developed approach has been implemented successfully on 23 oil wells field data to find optimum penetration rate, weight on bit and string rotation.


2017 ◽  
Vol 139 (6) ◽  
Author(s):  
Ali Hosseinzadeh ◽  
Firooz Bakhtiari-Nejad

In this paper, a new model is proposed to study the coupled axial–torsional vibration of the drill string. It is assumed that rotary table angular speed is constant and equals to the nominal angular speed of the drill string. In addition, axial displacement of any point on the drill string is considered to be as the sum of rigid-body motion and elastic vibrations. The depth of cut is defined using instantaneous dynamic states instead of using the delayed model as presented in previous researches. A velocity-weakening function is introduced for modeling the behavior of the frictional component of the torque-on-bit (TOB) with respect to the bit angular speed. After discretizing vibration equations, stability analysis of the system is investigated by linearizing the nonlinear system around its steady-state response point. Considering nominal weight-on-bit (WOB) (W0) and nominal rotational speed (Ω) as the input parameters of the drilling, variation of maximum allowable value of (W0) is presented with respect to variation of Ω . It is shown that the maximum allowable value of W0 has an increasing–decreasing behavior with respect to Ω. The effect of drill string upper and lower part lengths is studied on the stability of the system, and practical results are presented both in the condition that W0 is constant and in the condition that the hook upward force is constant. It is shown that by increasing the drill string length, the system is more exposed to instability, and this must be considered in regulating the input parameters of drilling.


2018 ◽  
Vol 25 (1) ◽  
pp. 194-202 ◽  
Author(s):  
Thiago G Ritto ◽  
Maryam Ghandchi-Tehrani

This paper presents active vibration control to reduce the stick-slip oscillations in drill-strings. A simplified two degrees-of-freedom drill-string torsional model is considered. The nonlinear interaction between the rock and the bit is included in the model, where its parameters are fitted with field data from a 5 km drill-string system. Different proportional-derivative (PD)-control strategies are employed and compared, including the one that takes into account the weight-on-bit (axial force) and the bit speed. Optimization problems are proposed to obtain the values of the gain coefficients, and a torsional stability map is constructed for different weight-on-bit values and top-drive speeds. It is noted that the information of the dynamics at the bottom increases the performance of the PD-controller significantly in terms of the torsional vibration suppression, for the system analyzed.


Sign in / Sign up

Export Citation Format

Share Document