Shenfu Injection Improves Cerebral Microcirculation and Reduces Brain Injury in a Porcine Model of Hemorrhagic Shock

2020 ◽  
Author(s):  
Junyuan Wu ◽  
Zhiwei Li ◽  
Wei Yuan ◽  
Qiang Zhang ◽  
Yong Liang ◽  
...  

Abstract Background: The aim of this study was to clarify effects of Shenfu infusion (SFI) on cerebral microcirculation and brain injury after hemorrhagic shock (HS).Methods: Twenty-one domestic male Beijing Landrace pigs were randomly divided into three groups: SFI group (SFI, n=8), saline group (SA, n=8) or sham operation group (SO, n=5). In the SFI group, animals were induced to HS by rapid bleeding to a mean arterial pressure of 40 mmHg within 10 minutes and maintained at 40 ± 3 mmHg for 60 minutes. Volume resuscitation (shed blood and crystalloid) and SFI were given after 1 hour of HS. In the SA group, animals received the same dose of saline instead of SFI. In the SO group, the same surgical procedure was performed but without inducing HS and volume resuscitation. The cerebral microvascular flow index (MFI), nitric oxide synthase (NOS) expression, aquaporin-4 expression, interleukin 6, tumor necrosis factor-α (TNF-α) and ultrastructural of microvascular endothelia were measured.Results: Compared with the SA group, SFI significantly improved cerebral MFI after HS. SFI up regulated cerebral endothelial NOS expression, but down regulated interleukin 6, TNF-α, inducible NOS and aquaporin-4 expression compared with the SA group. The cerebral microvascular endothelial injury and interstitial edema in the SFI group were lighter than those in the SA group.Conclusions: Combined application of SFI with volume resuscitation after HS can improve cerebral microcirculation and reduce brain injury.

Author(s):  
Junyuan Wu ◽  
Zhiwei Li ◽  
Wei Yuan ◽  
Qiang Zhang ◽  
Yong Liang ◽  
...  

BACKGROUND: Shenfu injection (SFI) is a traditional Chinese herbal medicine which has been clinically used for treatment of septic shock and cardiac shock. The aim of this study was to clarify effects of SFI on cerebral microcirculation and brain injury after hemorrhagic shock (HS). METHODS: Twenty-one domestic male Beijing Landrace pigs were randomly divided into three groups: SFI group (SFI, n = 8), saline group (SA, n = 8) or sham operation group (SO, n = 5). In the SFI group, animals were induced to HS by rapid bleeding to a mean arterial pressure of 40 mmHg within 10 minutes and maintained at 40±3 mmHg for 60 minutes. Volume resuscitation (shed blood and crystalloid) and SFI were given after 1 hour of HS. In the SA group, animals received the same dose of saline instead of SFI. In the SO group, the same surgical procedure was performed but without inducing HS and volume resuscitation. The cerebral microvascular flow index (MFI), nitric oxide synthase (NOS) expression, aquaporin-4 expression, interleukin-6, tumor necrosis factor-α (TNF-α) and ultrastructural of microvascular endothelia were measured. RESULTS: Compared with the SA group, SFI significantly improved cerebral MFI after HS. SFI up regulated cerebral endothelial NOS expression, but down regulated interleukin-6, TNF-α, inducible NOS and aquaporin-4 expression compared with the SA group. The cerebral microvascular endothelial injury and interstitial edema in the SFI group were lighter than those in the SA group. CONCLUSIONS: Combined application of SFI with volume resuscitation after HS can improve cerebral microcirculation and reduce brain injury.


Stroke ◽  
2016 ◽  
Vol 47 (suppl_1) ◽  
Author(s):  
Devon Lara ◽  
Gloria Statom ◽  
Olga A Bragina ◽  
Marina V Kameneva ◽  
Edwin M Nemoto ◽  
...  

Introduction: Hemorrhagic shock (HS), causing arterial hypotension, often occurs after traumatic brain injury (TBI). Current resuscitation fluids do not ameliorate the impaired cerebral microvascular perfusion leading to hypoxia, neuronal death, increased mortality and poor neurological outcome. Nanomolar concentrations of intravascular blood soluble drag reducing polymers (DRP) were shown to increase tissue perfusion and oxygenation and decrease peripheral vascular resistance by rheological modulation of hemodynamics. We hypothesized that the resuscitation fluid with DRP would improve cerebral microcirculation, oxygenation and neuronal recovery after TBI combined with HS (TBI+HS). Methods: Mild TBI was induced in rats by fluid percussion pulse (1.5 ATA, 50 ms duration) followed by induced by phlebotomy arterial hypotension (40 mmHg). Resuscitation fluid (lactated Ringers, LR) with DRP (DRP/LR) or without (LR) was infused to restore mean arterial pressure (MAP) to 60 mmHg for one hour (pre-hospital care), followed by re-infusion of blood to a MAP of 100 mmHg (hospital care). Using in vivo 2-photon laser scanning microscopy over the parietal cortex we monitored changes in microvascular blood flow, tissue oxygenation (NADH) and neuronal necrosis (i.v. propidium Iodide) for 5 hr after TBI+HS. Doppler cortical flow, rectal and cranial temperatures, arterial pressure, blood gases and electrolytes were monitored. Results: TBI+HS compromised brain microvascular flow leading to tissue hypoxia followed by neuronal necrosis. Resuscitation with DRP/LR compared to LR better improved cerebral microvascular perfusion (82 ± 9.7% vs. 62 ± 9.7%, respectively from pre-TBI baseline, p<0.05, n=7), attenuated capillary microtrombi formation and re-recruited collapsed during HS capillaries. Improved microvascular perfusion increased cortical oxygenation reducing hypoxia (77 ± 8.2% vs. 60 ± 10.5%, by DRP-LR vs. LR, respectively from baseline, p<0.05) and decreased neuronal necrosis (21 ± 7.2% vs. 36 ± 7.3%, respectively as a percentage of total neurons, p<0.05). Conclusions: DRP/LR resuscitation fluid is superior in the restoration of the cerebral microcirculation and neuroprotection following TBI + HS compared to volume expansion with LR.


2020 ◽  
Vol 35 (Supplement_3) ◽  
Author(s):  
Yan Xu ◽  
Yue Zhang

Abstract Background and Aims Ischemia-reperfusion injury (IRI) is the outcome of an inflammatory process and tubular cell death that is triggered by undergoing a transient reduction or cessation of blood flow and following by reperfusion. Unresolved IRI can contribute to chronic kidney disease even death. Our aims is to investigate the protective effect of hyperin on ischemia-reperfusion renal injury (IRI) and its possible mechanism. Method ① The transcriptome chip data of multiple IRI models were selected from the NCBI GEO DateSets database and a number of key proteins that could participate in IRI were screened out (the fold increase was greater than 2 fold and was statistically significant). Network and transcript binding motif analysis was performed to determine the best binding protein. ② C57BL / 6J mice were selected and randomly divided into normal group, sham operation group, IRI group (bilateral renal pedicle clamping for 45min), hyperin + IRI group (50mg / kg.d per day, 7 days before surgery ), DMSO + IRI group (7 days before the operation, the same amount of DMSO was administered to the stomach every day, and the operation was the same as AKI), with 6 rats in each group. Renal tissue and blood were collected 24 hours after operation for testing. ③ In vitro experiments, human proximal tubule epithelial cells (HK-2) were selected and divided into hypoxia 3, 6, 9, 12, 24, 36, and 48h for reoxygenation of 1, 3, and 6h respectively. Relevant indicators for RT-PCR detection were determined Optimal hypoxia time. The drug safe concentration was selected according to 0, 5, 10, 25, 50, 100, 200, 400 μg / ml hyperin pre-treatment for 12 hours, and the CCK8 reagent was added for 2 hours to measure the absorbance at 450 nm. The cells were randomly divided into normal group, hypoxia group, hypoxia + DMSO group, hypoxia + hyperin group, and related indexes were detected by RT-PCR and Western Blot. ④ Obtain the tertiary structure of the protein and the three-dimensional structure of the hyperin molecule from the RCSB Protein Data Bank website and the PubChem compound database, and use molecular docking technology to determine the proteins that can bind to hyperin using autodock software and analyze their binding ability. Results Bioinformatics analysis suggested that STK40 protein is one of the key factors of IRI and may be a target for preventing and treating diseases. In vivo experiments showed that compared with the normal group and the sham operation group, the levels of serum creatinine, blood urea nitrogen, and kim-1 in rats were significantly increased after AKI, and HE staining of pathological sections showed an increase in renal tubular injury scores. Significantly decreased (P&lt;0.05); RT-PCR results showed that kim-1, caspase-3, NF-κB, IL-6, TNF-α increased significantly after AKI, STK40, Bcl2 / BAX decreased, and the above after hyperin The indicators changed in opposite directions (P &lt;0.05). In vitro experiments: The best time for hypoxia is 24h hypoxia + 1h reoxygenation; compared with the control group, the drug concentration is &lt;100 μg / mL and the cell proliferation activity rate is&gt; 90%, so the hyperin concentration was selected as 50 μg / mL (P &lt; 0.05); RT-PCR results showed that Hif1-α, caspase-3, NF-κB, IL-6, TNF-α significantly increased, and STK40, Bcl2 / BAX decreased compared with the normal group. After administration of hyperin, the above indexes changed in opposite directions (P &lt;0.05). Conclusion In this study, using molecular docking technology and constructing IRI mice model, it was confirmed that hyperin can reduce IRI and exert a protective effect on IRI by inhibiting STK40 expression.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Zhenzhen Zhong ◽  
Ping Xu ◽  
Jun Wen ◽  
Xiangdong Li ◽  
Xiaobo Zhang

Objective. The aim was to investigate the role that enriched environment (EE) plays in the regulation of inflammation in cerebral infarction (CI) lesions and further explore the relationship between this regulation and dendritic cells (DCs). Methods. 72 Sprague-Dawley rats were randomly divided into sham operation group (CON group, n = 24 ) and CI model group ( n = 48 ). On completion of the establishment of CI rat models by Longa’s method, rats in the models group were further assigned to standard environment group (NC group, n = 24 ) and EE group ( n = 24 ). HE staining was utilized for evaluation of neuronal injury in the lesions. The number of CD74- and integrin αE-positive cells was detected by immunofluorescence. The expression of the IL-1β, IL-6, and TNF-α in the brain tissue and serum of rats was measured by immunohistochemistry and ELISA, respectively. Results. In comparison with the CON group, the NC and EE groups showed significant increases in neuronal injury, CD74- and Integrin αE-positive cells, DC content, as well as IL-1β, IL-6, and TNF-α expression in brain tissue and serum. According to the further comparison between the NC group and EE group, the latter showed decreases in each indicator, and these decreases were in a time-dependent manner. Conclusion. EE avoids the accumulation of DCs in the lesions and reduces the contents of IL-1β, IL-6, and TNF-α, consequently promoting the recovery of CI. And better recovery results can be obtained through increasing the time to stay in EE.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Yi Song ◽  
Yi Wang ◽  
Xin Qi ◽  
Xin Kang ◽  
Xiaoguang Lu

Introduction. Severe acute pancreatitis (SAP) is a clinical emergency often accompanied by inflammatory response syndrome (SIRS), which eventually leads to acute lung injury and failure of other organs. The activation of liver Kupffer cells (KCs) plays a major role in the process of SIRS and multiorgan damage caused by SAP. Da-Huang-Fu-Zi-Tang (DHFZT), a traditional Chinese prescription, has been widely used for SAP in the clinic. The present study investigated the activation state of KCs in SAP and the potential mechanism of DHFZT. Methods. A total of 24 Sprague Dawley rats were randomly assigned to four groups: SH (sham operation group + saline enema), SH-DHFZT (sham operation group + DHFZT enema), SAP (model group + saline enema), and SAP-DHFZT (model group + DHFZT enema). Blood samples were drawn from the abdominal aorta for measuring serum endotoxin, amylase, calcium ion, IL-1β, TNF-α, iNOS, and IL-10. Then, the pancreas, lung, liver, and ileum were harvested for histological observation, and the liver was used to detect the level of F4/80, CD86, and CD163 in KCs with immunohistochemistry and western blot. Results. In the SAP group, the CD86+ KCs were significantly increased with a high level of IL-1β, TNF-α, and iNOS, and the organs were impaired. In the SAP-DHFZT group, CD163+ KCs were significantly increased with the high level of IL-10, and the damage to organs was alleviated. Conclusion. These phenomena suggested that the SIRS and multiple organ damage in SAP might be related to the excessive activation of M1 KCs, and DHFZT might alleviate the SIRS by inducing the differentiation of KCs into the M2-type and promote the expression of anti-inflammatory factor IL-10.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Jiawen Zhang ◽  
Hao Jiang ◽  
Fang Wu ◽  
Xiaofei Chi ◽  
Yu Pang ◽  
...  

This study aimed to explore the influence of hesperidin on the polarization of microglia to clarify the key mechanism of regulating the polarization of M2 microglia. C57BL/6 mice were randomly divided into middle cerebral artery occlusion model group (MCAO group), MCAO + hesperidin treatment group (MCAO + hesperidin group), and sham group (sham operation group). The mice were assessed with neurological scores for their functional status. 2,3,5-Triphenyltetrazole chloride (TTC) was used to determine the volume of cerebral infarction. Hematoxylin and eosin (H&E) staining was performed to detect brain loss. The system with 1% O2, 5% CO2, and 92% N2 was applied to establish BV2 in vitro model induced by MCAO. TNF-α, IL-1β, TGF-β, and IL-10 levels of cytokines in the supernatant were detected by ELISA. RT-qPCR was used to detect mRNA levels of M1 iNOS, CD11b, CD32, and CD86, and mRNA levels of M2 CD206, Arg-1, and TGF-β. The Iba-1, iNOS, and Arg-1 of microglia and protein levels of TLR4 and p-NF-κB related to the pathway were detected by Western blot. After treatment with hesperidin, BV2 cells induced by MCAO in vitro can reduce the proinflammatory cytokines of TNF-α and IL-1β significantly, further upregulating anti-inflammatory cytokines of TGF-β, IL-10 while inhibiting TLR4 and p-NF-κB expression. The MCAO-induced BV2 cells treated by TLR-4 inhibitor TAK-242 and NF-κB inhibitor BAY 11-7082 had similar polarization effects to those treated with hesperidin. This study found that hesperetin gavage treatment can improve the neurological deficit and regulate the polarization of microglia in MCAO mice. In vitro experiments further verified that hesperidin plays a neuroprotective role by inhibiting the TLR4-NF-κB pathway, thus providing new targets and strategies for neuroprotection and nerve repair after ischemic stroke.


2019 ◽  
Vol 9 (6) ◽  
pp. 860-864
Author(s):  
Yu Zeng ◽  
Hongyu Duan ◽  
Yujiang Peng ◽  
Bo Shao ◽  
Xijun He ◽  
...  

This study is to investigate the expression of serum S100A8/A9 in rats after cardiopulmonary resuscitation (CPR) and its correlation with brain injury after CPR. Thirty-six male SD rats were randomly divided into control group (n = 6), cardiopulmonary resuscitation group (n = 24) and sham operation group (n = 6). The cardiopulmonary resuscitation group was further divided into four subgroups according to the time after recovery of autonomous circulation: 6-hour group, 12-hour group, 24-hour group and 48-hour group, with 6 rats in each group. The rats in the cardiopulmonary resuscitation group was conducted by asphyxia then given cardiopulmonary resuscitation (CPR), while the rats in the sham operation group were given tracheal intubation without asphyxia. The rats in each group were assessed by modified Neurological Severity Score (mNSS). The vein blood from tail was collected to detect the expression of serum S100A8/A9. Then the brain tissue was taken to measure the water content. Our results showed that the neurological function of the sham-operated group and the control group was normal, the mNSS scores of which were 0. However, the neurological function score in the CPR group decreased gradually with time, but it was still significantly higher than that in the normal value until 48 hours (P < 0.05). There was no significant difference in brain water content between the sham-operated group and the control group (P > 0.05). The water content of brain tissue in sham-operated group was higher than that in control group at 6 h, and the amount was increasing as the time extended. The level reached the highest at 24 h and started to decrease at 48 h, but the it was still higher than that in sham-operated group (P < 0.05). The expression level of serum S100 A8/A9 in sham-operated group was slightly higher than that in control group, but there was no statistical difference (P > 0.05); The expression level of S100 A8/A9 in cardiopulmonary resuscitation group was significantly higher than that in control group at 6 h, and still increased at 24 h. Although the level decreased at 48 h, but was still higher than that in sham operation group (P < 0.05). The mNSS score and brain water content were significantly positively correlated with serum S100 A8/A9 (r = 0.48, P < 0.001; r = 0.63, P < 0.001). In conclusion, the level of serum S100A8/A9 in rats after cardiopulmonary resuscitation is significantly increased, which is positively correlated with the degree of brain injury in rats.


Circulation ◽  
2015 ◽  
Vol 132 (suppl_3) ◽  
Author(s):  
Zhangwei Chen ◽  
Yuanyuan Cao ◽  
Juying Qian ◽  
Jianying Ma ◽  
Yunzeng Zou ◽  
...  

Objectives: MicroRNAs are small non-coding RNAs that regulate gene expression at the post-transcriptional level by either degradation or translational repression of a target mRNA. It has been demonstrated that miR-133a plays a critical role on inflammatory response after acute myocardial infarction. However, it is unknown about myocardial expression of miR-133a after coronary microembolization (CME) in mini-pigs. Methods: Ten mini-pigs were enroll in this study, including sham-operation group (n=5), CME group (n=7) and adalimumab pre-treatment group (n=6) (TNF-α antibody, 2mg/kg intracoronary injection before CME). Magnetic resonance imaging (3.0-T) was performed at baseline, 6th hour and one week after procedure. Serum TNF-α and troponin T were also detected. Myocardial expressions of miR-133a were detected by realtime-PCR method. Myocardium specimens were embedded in paraffin for hematoxylin and eosin (HE) staining, while number of leukocytes infiltration were analyzed by Leica DFC 320 digital soft. Results: Compared with sham-operation group, serum level of troponin T and TNF-α were increased significantly in CME group, while leukocyte infiltration on microembolization associated myocardium was also increased. Interestingly, myocardial expression of miR-133a was increased significantly after CME (2.33±0.62 vs. 1.28±0.68, P<0.05). Cardiac function detected by MRI was decreased in CME group (LVEF at 6th hour: 55.2% vs. 61.4%, P<0.05; LVEF at one week: 56.4% vs. 62.8%, P<0.05). We found that pre-treatment with adalimumab not only significantly improved LVEF after CME (6th hour: 59.3% vs. 55.2%, P<0.05; one week: 60.2% vs. 56.4%, P<0.05), but also decreased myocardial expression of miR-133a (1.36±0.58 vs. 2.33±0.62, P<0.05), which had a positive relation with the average number of leukocytes infiltration on microembolization area (r=0.364, P<0.05) . Conclusions: TNF-α/miR-133a expression might be involved in cardiac dysfunction after CME, which was associated with the process of leukocytes infiltration.


Sign in / Sign up

Export Citation Format

Share Document