Unsupervised Deep Learning for Binary Offloading in Mobile Edge Computation Network

Author(s):  
Xue Chen ◽  
Hongbo Xu ◽  
Guoping Zhang ◽  
Yun Chen ◽  
Ruijie Li

Abstract Mobile edge computation (MEC) is a potential technology to reduce the energy consumption and task execution delay for tackling computation-intensive tasks on mobile device (MD). The resource allocation of MEC is an optimization problem, however, the existing large amount of computation may hinder its practical application. In this work, we propose a multiuser MEC framework based on unsupervised deep learning (DL) to reduce energy consumption and computation by offloading tasks to edge servers. The binary offloading decision and resource allocation are jointly optimized to minimize energy consumption of MDs under latency constraint and transmit power constraint. This joint optimization problem is a mixed integer nonconvex problem which result in the gradient vanishing problem in backpropagation. To address this, we propose a novel binary computation offloading scheme (BCOS), in which a deep neural network (DNN) with an auxiliary network is designed. By using the auxiliary network as a teacher network, the student network can obtain the lossless gradient information in joint training phase. As a result, the sub-optimal solution of the optimization problem can be acquired by the learning-based BCOS. Simulation results demonstrate that the BCOS is effective to solve the binary offloading problem by the trained network with low complexity.

2019 ◽  
Vol 10 (1) ◽  
pp. 203 ◽  
Author(s):  
Luan N. T. Huynh ◽  
Quoc-Viet Pham ◽  
Xuan-Qui Pham ◽  
Tri D. T. Nguyen ◽  
Md Delowar Hossain ◽  
...  

In recent years, multi-access edge computing (MEC) has become a promising technology used in 5G networks based on its ability to offload computational tasks from mobile devices (MDs) to edge servers in order to address MD-specific limitations. Despite considerable research on computation offloading in 5G networks, this activity in multi-tier multi-MEC server systems continues to attract attention. Here, we investigated a two-tier computation-offloading strategy for multi-user multi-MEC servers in heterogeneous networks. For this scenario, we formulated a joint resource-allocation and computation-offloading decision strategy to minimize the total computing overhead of MDs, including completion time and energy consumption. The optimization problem was formulated as a mixed-integer nonlinear program problem of NP-hard complexity. Under complex optimization and various application constraints, we divided the original problem into two subproblems: decisions of resource allocation and computation offloading. We developed an efficient, low-complexity algorithm using particle swarm optimization capable of high-quality solutions and guaranteed convergence, with a high-level heuristic (i.e., meta-heuristic) that performed well at solving a challenging optimization problem. Simulation results indicated that the proposed algorithm significantly reduced the total computing overhead of MDs relative to several baseline methods while guaranteeing to converge to stable solutions.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Yawen Zhang ◽  
Yifeng Miao ◽  
Shujia Pan ◽  
Siguang Chen

In order to effectively extend the lifetime of Internet of Things (IoT) devices, improve the energy efficiency of task processing, and build a self-sustaining and green edge computing system, this paper proposes an efficient and energy-saving computation offloading mechanism with energy harvesting for IoT. Specifically, based on the comprehensive consideration of local computing resource, time allocation ratio of energy harvesting, and offloading decision, an optimization problem that minimizes the total energy consumption of all user devices is formulated. In order to solve such optimization problem, a deep learning-based efficient and energy-saving offloading decision and resource allocation algorithm is proposed. The design of deep neural network architecture incorporating regularization method and the employment of the stochastic gradient descent method can accelerate the convergence rate of the developed algorithm and improve its generalization performance. Furthermore, it can minimize the total energy consumption of task processing by integrating the momentum gradient descent to solve the resource optimization allocation problem. Finally, the simulation results show that the mechanism proposed in this paper has significant advantage in convergence rate and can achieve an optimal offloading and resource allocation strategy that is close to the solution of greedy algorithm.


Electronics ◽  
2019 ◽  
Vol 8 (12) ◽  
pp. 1430 ◽  
Author(s):  
Yanwen Lan ◽  
Xiaoxiang Wang ◽  
Chong Wang ◽  
Dongyu Wang ◽  
Qi Li

The hierarchical edge-cloud enabled paradigm has recently been proposed to provide abundant resources for 5G wireless networks. However, the computation and communication capabilities are heterogeneous which makes the potential advantages difficult to be fully explored. Besides, previous works on mobile edge computing (MEC) focused on server caching and offloading, ignoring the computational and caching gains brought by the proximity of user equipments (UEs). In this paper, we investigate the computation offloading in a three-tier cache-assisted hierarchical edge-cloud system. In this system, UEs cache tasks and can offload their workloads to edge servers or adjoining UEs by device-to-device (D2D) for collaborative processing. A cost minimization problem is proposed by the tradeoff between service delay and energy consumption. In this problem, the offloading decision, the computational resources and the offloading ratio are jointly optimized in each offloading mode. Then, we formulate this problem as a mixed-integer nonlinear optimization problem (MINLP) which is non-convex. To solve it, we propose a joint computation offloading and resource allocation optimization (JORA) scheme. Primarily, in this scheme, we decompose the original problem into three independent subproblems and analyze their convexity. After that, we transform them into solvable forms (e.g., convex optimization problem or linear optimization problem). Then, an iteration-based algorithm with the Lagrange multiplier method and a distributed joint optimization algorithm with the adoption of game theory are proposed to solve these problems. Finally, the simulation results show the performance of our proposed scheme compared with other existing benchmark schemes.


2020 ◽  
Vol 2020 ◽  
pp. 1-12 ◽  
Author(s):  
Zhenquan Qin ◽  
Xueyan Qiu ◽  
Jin Ye ◽  
Lei Wang

The foundation of urban computing and smart technology is edge computing. Edge computing provides a new solution for large-scale computing and saves more energy while bringing a small amount of latency compared to local computing on mobile devices. To investigate the relationship between the cost of computing tasks and the consumption of time and energy, we propose a computation offloading scheme that achieves lower execution costs by cooperatively allocating computing resources by mobile devices and the edge server. For the mixed-integer nonlinear optimization problem of computing resource allocation and offloading strategy, we segment the problem and propose an iterative optimization algorithm to find the approximate optimal solution. The numerical results of the simulation experiment show that the algorithm can obtain a lower total cost than the baseline algorithm in most cases.


Author(s):  
Tianqi Jing ◽  
Shiwen He ◽  
Fei Yu ◽  
Yongming Huang ◽  
Luxi Yang ◽  
...  

AbstractCooperation between the mobile edge computing (MEC) and the mobile cloud computing (MCC) in offloading computing could improve quality of service (QoS) of user equipments (UEs) with computation-intensive tasks. In this paper, in order to minimize the expect charge, we focus on the problem of how to offload the computation-intensive task from the resource-scarce UE to access point’s (AP) and the cloud, and the density allocation of APs’ at mobile edge. We consider three offloading computing modes and focus on the coverage probability of each mode and corresponding ergodic rates. The resulting optimization problem is a mixed-integer and non-convex problem in the objective function and constraints. We propose a low-complexity suboptimal algorithm called Iteration of Convex Optimization and Nonlinear Programming (ICONP) to solve it. Numerical results verify the better performance of our proposed algorithm. Optimal computing ratios and APs’ density allocation contribute to the charge saving.


Author(s):  
Qingzhu Wang ◽  
Xiaoyun Cui

As mobile devices become more and more powerful, applications generate a large number of computing tasks, and mobile devices themselves cannot meet the needs of users. This article proposes a computation offloading model in which execution units including mobile devices, edge server, and cloud server. Previous studies on joint optimization only considered tasks execution time and the energy consumption of mobile devices, and ignored the energy consumption of edge and cloud server. However, edge server and cloud server energy consumption have a significant impact on the final offloading decision. This paper comprehensively considers execution time and energy consumption of three execution units, and formulates task offloading decision as a single-objective optimization problem. Genetic algorithm with elitism preservation and random strategy is adopted to obtain optimal solution of the problem. At last, simulation experiments show that the proposed computation offloading model has lower fitness value compared with other computation offloading models.


2018 ◽  
Vol 17 ◽  
pp. 03015
Author(s):  
Huanhuan MAO ◽  
Pengcheng Zhu ◽  
Jiamin Li

Energy harvesting is one of the promising option for realization of green communication and has been a growing concern recently. In this paper, we address the downlink resource allocation in OFDM system with distributed antennas with hybrid power supply base station, where energy harvesting and non-renewable power sources are used complementarily. A joint subcarrier and power allocation problem is formulated for minimizing the net Energy Consumption Index (ECI) with system Quality of Service (QoS) and bit error rates constraint. The problem is a 0-1 mixed integer nonlinear programming problem due to the binary subcarrier allocation variable. To solve the problem, we design an algorithm based on Lagrange relaxation method and fraction programming which optimizes the power allocation and subcarrier allocation iteratively in two nests. Simulation results show that the proposed algorithm converges in a small number of iterations and can improve net ECI of system greatly.


Sensors ◽  
2019 ◽  
Vol 19 (6) ◽  
pp. 1446 ◽  
Author(s):  
Liang Huang ◽  
Xu Feng ◽  
Luxin Zhang ◽  
Liping Qian ◽  
Yuan Wu

This paper studies mobile edge computing (MEC) networks where multiple wireless devices (WDs) offload their computation tasks to multiple edge servers and one cloud server. Considering different real-time computation tasks at different WDs, every task is decided to be processed locally at its WD or to be offloaded to and processed at one of the edge servers or the cloud server. In this paper, we investigate low-complexity computation offloading policies to guarantee quality of service of the MEC network and to minimize WDs’ energy consumption. Specifically, both a linear programing relaxation-based (LR-based) algorithm and a distributed deep learning-based offloading (DDLO) algorithm are independently studied for MEC networks. We further propose a heterogeneous DDLO to achieve better convergence performance than DDLO. Extensive numerical results show that the DDLO algorithms guarantee better performance than the LR-based algorithm. Furthermore, the DDLO algorithm generates an offloading decision in less than 1 millisecond, which is several orders faster than the LR-based algorithm.


Electronics ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 582
Author(s):  
Feng Hu ◽  
Kaiyue Wang ◽  
Shufeng Li ◽  
Libiao Jin

This paper proposes a dynamic resource allocation scheme to maximize the energy efficiency (EE) for Massive MIMO Systems. The imperfect channel estimation (CE) and feedback are explicitly considered in the EE maximization problem, which aim to optimize the power allocation, the antenna subset selection for transmission, and the pilot assignment. Assuming CE error to be bounded for the complex-constrained Cramer–Rao Bound (CRB), theoretical results show that the lower bound is directly proportional to its number of unconstrained parameters. Utilizing this perspective, a separated and bi-directional estimation is developed to achieve both low CRB and low complexity by exploiting channel and noise spatial separation. Exploiting global optimization procedure, the optimal resource allocation can be transformed into a standard convex optimization problem. This allows us to derive an efficient iterative algorithm for obtaining the optimal solution. Numerical results are provided to demonstrate that the outperformance of the proposed algorithms are superior to existing schemes.


Sign in / Sign up

Export Citation Format

Share Document