scholarly journals Comprehensive analysis of electronic properties due to N, O, Be, and B elements doped and adsorbed on graphene from DFT calculations

Author(s):  
Gaurav Raj ◽  
Hud Wahab ◽  
Patrick A. Johnson ◽  
Dilpuneet S. Aidhy

Abstract Doping and adsorption of impurities affect the electronic properties of graphene. In this paper, using density functional theory (DFT) calculations, we present a comprehensive analysis of the effects of substitutional doping as well as atomic and diatomic adsorption on the electronic properties in graphene. Four elements, i.e., N, O, Be and B are considered. We find that (1) the substitutional doping with either of the four elements results in opening of the bandgap, and the bandgap increases with increase in the doping concentration. (2) The N, O and B atoms chemisorb on the graphene surface and open the bandgap, whereas Be atom physisorbs without changing the bandgap of pristine graphene. (3) Diatomic N2 and O2 physisorb on graphene and do not alter the bandgap, whereas both Be2 and B2 chemisorb on graphene but only B2 opens the band gap. The differences in the properties due to LDA and GGA exchange-correlation functionals, van der Waals correction terms, and system sizes are also presented. These results are compared with the existing literature, and possible underlying reasons for the existing significant discrepancies among literature are discussed.

2020 ◽  
Vol 44 (34) ◽  
pp. 14513-14528
Author(s):  
Alireza Soltani ◽  
Mohammad Ramezanitaghartapeh ◽  
Masoud Bezi Javan ◽  
Mohammad T. Baei ◽  
Andrew Ng Kay Lup ◽  
...  

The interaction energies and optoelectronic properties of sarin (SF) and chlorosarin (SC) on the B12N12 with and without the presence of an electric field have been studied using density functional theory (DFT) calculations.


2020 ◽  
Vol 34 (32) ◽  
pp. 2050359
Author(s):  
Yi Zhang ◽  
Weiwei Ju ◽  
Tongwei Li ◽  
Haisheng Li

By performing density functional theory (DFT) calculations, we demonstrate that periodically repeating heterostructures of zigzag borophene nanoribbons (BNR) of different widths can form stable borophene superlattice (BSL). The energy band structures of BSL can be modulated through modifying the width and length of the segments. A metal-semiconductor transition can be obtained when the length of each segment is lengthened, whereas, the magnetism of BSL is influenced by the width of the segments. In those magnetic systems, the magnetic moments are mainly localized on protruding B atoms located at the edge, while no magnetic moments occur in the center B atoms. The hydrogenated BNR and BSL are further investigated. The hydrogenation can modify the electronic properties of BNR and BSL as well as quench the magnetism. All hydrogenated BNR and BSL are non-magnetic. Our results indicate that great potential exists in these systems for borophene utilization in nanoelectronics and spintronics.


RSC Advances ◽  
2020 ◽  
Vol 10 (15) ◽  
pp. 8927-8935 ◽  
Author(s):  
Douglas Duarte de Vargas ◽  
Rogério José Baierle

Using density functional theory (DFT) calculations we investigate the structural and electronic properties of a heterogeneous van der Waals (vdW) structure consisting of silicene and NiI2 single layers.


BIBECHANA ◽  
2014 ◽  
Vol 11 ◽  
pp. 113-122 ◽  
Author(s):  
S Lamichhane ◽  
N Pantha ◽  
NP Adhikari

Adsorption of gaseous/molecular hydrogen on platinum (Pt) decorated and pristine graphene have been studied systematically by using density functional theory (DFT) level of calculations implemented by Quantum ESPRESSO codes. The Perdew-Burke-Ernzerhof (PBE) type generalized gradient approximation (GGA) exchange-correlation functional and London dispersion forces have been incorporated in the DFT-D2 level of algorithm for short and long range electron-electron interactions, respectively. With reference to the binding energy of Pt on different symmetry sites of graphene supercells, the bridge (B) site has been predicted as the best adsorption site. In case of 3×3 supercell of graphene (used for detail calculations), the binding energy has been estimated as 2.02 eV. The band structure and density of states calculations of Pt adatom graphene predict changes in electronic/magnetic properties caused by the atom (Pt). The adatom (Pt) also enhances the binding energy per hydrogen molecule in Pt-graphene comparing to that in pristine graphene and records the values within the range of 1.84 eV to 0.13 eV for one to eight molecules, respectively. DOI: http://dx.doi.org/10.3126/bibechana.v11i0.10389 BIBECHANA 11(1) (2014) 113-122


2012 ◽  
Vol 190-191 ◽  
pp. 405-408
Author(s):  
Cheng Gen Zhang ◽  
Shu Yuan Yu ◽  
Zong Ji Cao

Density functional theory (DFT) calculations were performed to investigate the structures of chloro silsesquioxanes Si2nO3nCl2n (n=1-5). Our study focuses on the structures, stabilities, and electronic properties of the chloro silsesquioxanes. The large HOMO–LUMO gaps, which range from 4.54 to 7.39 eV, imply optimal electronic structures for these molecules.


2012 ◽  
Vol 535-537 ◽  
pp. 1552-1555
Author(s):  
Cheng Gen Zhang ◽  
Shu Yuan Yu ◽  
Hai Mei Zhang

Density functional theory (DFT) calculations were performed to investigate the structures of tert-butyl silsesquioxanes Si2nO3n(CMe3)2n (n=1-6). Our study focuses on the structures, stabilities, and electronic properties of the tert-butyl silsesquioxanes. The large HOMO–LUMO gaps, which range from 5.68 to 6.99 eV, imply optimal electronic structures for these molecules.


2005 ◽  
Vol 494 ◽  
pp. 79-82 ◽  
Author(s):  
V. Koteski ◽  
Bozidar Cekić ◽  
N. Novaković ◽  
J. Belošević-Čavor

The structural and geometric properties of small Mo clusters are studied by means of first principles density functional theory (DFT) calculations with planewaves and pseudopotentials. The lowest energy structures of Mon (n=2-6) clusters are determined. The evolution of electronic properties with increasing cluster size is discussed. The geometric structure, average bond lengths, and binding energies of the lowest energy isomers are reported and the results are compared with the available experimental and theoretical data.


2015 ◽  
Vol 29 (17) ◽  
pp. 1550116 ◽  
Author(s):  
Liren Liu ◽  
Yanbo Zou ◽  
Hengjiang Zhu

Extensive studies of the geometric structures, stabilities and electronic properties of gallium nitride (GaN)n tubelike clusters and single-walled GaN nanotubes (GaNNTs) were carried out using density-functional theory (DFT) calculations. A family of stable tubelike structures with Ga–N alternating arrangement was observed when n≥8 and their structural units (four-membered rings (4MRs) and six-membered rings (6MRs)) obey the general developing formula. The size-dependent properties of the frontier molecular orbital surfaces explain why the long and stable tubelike clusters can be obtained successfully. They also illustrate the reason why GaNNTs can be synthesized experimentally. Our results also reveal that the single-walled GaNNTs, which as semiconductors with a large bandgap, can be prepared by using the proper assembly of tubelike clusters.


2017 ◽  
Vol 31 (08) ◽  
pp. 1750054
Author(s):  
F. Nasehnia ◽  
M. Seifi

Mechanical and electronic properties of oxygen plasma-treated graphene sheets are investigated using density functional theory (DFT). Oxygen plasma-treated graphene is modeled using a graphene sheet with adsorbed epoxide functional groups (C–O–C) on its one side. The most stable configurations of such oxidized graphene sheets with different O/C ratios ranging from 12.5% to 50% are then calculated. In the special case of O/C = 50% (fully oxidized surface), both single- and double-sided oxidation cases are considered. The elastic and electronic properties of the energetically most favorable configurations are evaluated under the tensile and compressive loads in harmonic range. For structures with high O/C ratios (O/C [Formula: see text] 25%), the elastic constants (modulus of elasticity and bulk modulus) are significantly smaller than those of graphene while for low O/C ratios (O/C [Formula: see text] 12.5%), these quantities are almost equal to the elastic constants of pristine graphene. We also found that the electronic bandgap of the oxidized sheets is increased under tensile loading.


Sign in / Sign up

Export Citation Format

Share Document