scholarly journals Machine Learning Concepts for Correlated Big Data Privacy

Author(s):  
SREEMOYEE BISWAS ◽  
Nilay Khare ◽  
Pragati Agrawal ◽  
Priyank Jain

Abstract With data becoming a salient asset worldwide, dependence within data kept on growing, hence the real world datasets that one works upon in today's time are highly correlated. Since the past few years, researchers have given attention to this aspect of data privacy and found that where there exists a correlation among data, the existing privacy guarantees could not be assured with existing privacy algorithms. The privacy guarantees provided by existing algorithms were enough when there existed no relation between data in the datasets. Hence, by keeping the existence of data correlation into account, there is a dire need, to reconsider the privacy algorithms. Some of the research have considered to utilize a well known machine learning concept, i.e., Data Correlation Analysis to understand the relationship between data in a better way. This has given some promising results as well. Though its less but still a considerable amount of research has been done for correlated data privacy. But correlated big data privacy is very less explored. The real world datasets that are worked upon, are often large in size (technologically termed as big data) and house a high amount of data correlation. Hence, there is a grave need to understand and propose solutions for correlated big data privacy.

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Sreemoyee Biswas ◽  
Nilay Khare ◽  
Pragati Agrawal ◽  
Priyank Jain

AbstractWith data becoming a salient asset worldwide, dependence amongst data kept on growing. Hence the real-world datasets that one works upon in today’s time are highly correlated. Since the past few years, researchers have given attention to this aspect of data privacy and found a correlation among data. The existing data privacy guarantees cannot assure the expected data privacy algorithms. The privacy guarantees provided by existing algorithms were enough when there existed no relation between data in the datasets. Hence, by keeping the existence of data correlation into account, there is a dire need to reconsider the privacy algorithms. Some of the research has considered utilizing a well-known machine learning concept, i.e., Data Correlation Analysis, to understand the relationship between data in a better way. This concept has given some promising results as well. Though it is still concise, the researchers did a considerable amount of research on correlated data privacy. Researchers have provided solutions using probabilistic models, behavioral analysis, sensitivity analysis, information theory models, statistical correlation analysis, exhaustive combination analysis, temporal privacy leakages, and weighted hierarchical graphs. Nevertheless, researchers are doing work upon the real-world datasets that are often large (technologically termed big data) and house a high amount of data correlation. Firstly, the data correlation in big data must be studied. Researchers are exploring different analysis techniques to find the best suitable. Then, they might suggest a measure to guarantee privacy for correlated big data. This survey paper presents a detailed survey of the methods proposed by different researchers to deal with the problem of correlated data privacy and correlated big data privacy and highlights the future scope in this area. The quantitative analysis of the reviewed articles suggests that data correlation is a significant threat to data privacy. This threat further gets magnified with big data. While considering and analyzing data correlation, then parameters such as Maximum queries executed, Mean average error values show better results when compared with other methods. Hence, there is a grave need to understand and propose solutions for correlated big data privacy.


Author(s):  
Shalin Eliabeth S. ◽  
Sarju S.

Big data privacy preservation is one of the most disturbed issues in current industry. Sometimes the data privacy problems never identified when input data is published on cloud environment. Data privacy preservation in hadoop deals in hiding and publishing input dataset to the distributed environment. In this paper investigate the problem of big data anonymization for privacy preservation from the perspectives of scalability and time factor etc. At present, many cloud applications with big data anonymization faces the same kind of problems. For recovering this kind of problems, here introduced a data anonymization algorithm called Two Phase Top-Down Specialization (TPTDS) algorithm that is implemented in hadoop. For the data anonymization-45,222 records of adults information with 15 attribute values was taken as the input big data. With the help of multidimensional anonymization in map reduce framework, here implemented proposed Two-Phase Top-Down Specialization anonymization algorithm in hadoop and it will increases the efficiency on the big data processing system. By conducting experiment in both one dimensional and multidimensional map reduce framework with Two Phase Top-Down Specialization algorithm on hadoop, the better result shown in multidimensional anonymization on input adult dataset. Data sets is generalized in a top-down manner and the better result was shown in multidimensional map reduce framework by the better IGPL values generated by the algorithm. The anonymization was performed with specialization operation on taxonomy tree. The experiment shows that the solutions improves the IGPL values, anonymity parameter and decreases the execution time of big data privacy preservation by compared to the existing algorithm. This experimental result will leads to great application to the distributed environment.


2020 ◽  
Vol 38 ◽  
pp. 100709 ◽  
Author(s):  
M. Million ◽  
P. Gautret ◽  
P. Colson ◽  
Y. Roussel ◽  
G. Dubourg ◽  
...  

2021 ◽  
pp. 027836492098785
Author(s):  
Julian Ibarz ◽  
Jie Tan ◽  
Chelsea Finn ◽  
Mrinal Kalakrishnan ◽  
Peter Pastor ◽  
...  

Deep reinforcement learning (RL) has emerged as a promising approach for autonomously acquiring complex behaviors from low-level sensor observations. Although a large portion of deep RL research has focused on applications in video games and simulated control, which does not connect with the constraints of learning in real environments, deep RL has also demonstrated promise in enabling physical robots to learn complex skills in the real world. At the same time, real-world robotics provides an appealing domain for evaluating such algorithms, as it connects directly to how humans learn: as an embodied agent in the real world. Learning to perceive and move in the real world presents numerous challenges, some of which are easier to address than others, and some of which are often not considered in RL research that focuses only on simulated domains. In this review article, we present a number of case studies involving robotic deep RL. Building off of these case studies, we discuss commonly perceived challenges in deep RL and how they have been addressed in these works. We also provide an overview of other outstanding challenges, many of which are unique to the real-world robotics setting and are not often the focus of mainstream RL research. Our goal is to provide a resource both for roboticists and machine learning researchers who are interested in furthering the progress of deep RL in the real world.


Sign in / Sign up

Export Citation Format

Share Document