scholarly journals Up-regulation thioredoxin contributes to inhibite diabetic hearing impairment

Author(s):  
Xiang Ren ◽  
Jinjuan Lv ◽  
Yuzhen Fu ◽  
Na Zhang ◽  
Chenghong Zhang ◽  
...  

Abstract Diabetes mellitus (DM) is a metabolic disorder characterized by chronic hyperglycemia. An association between DM and hearing impairment has been widely discussed. It’s essential to find effective prevetion or diagnosis of diabetic hearing loss. Thioredoxin (Trx) is a small molecule protein (12kDa) and plays biological functions such as anti-apoptotic, transcriptional regulation. In this study, our aim is to clarify the protective effect of Trx on diabetic hearing loss to find the early potential therapeutic target of diabetic hearing impairment in clinic in the future. Trx transgenic(Tg) mice was used to induce diabetic model by intraperitoneal injected Streptozotocin (STZ) and with/without SF or PX12 treatment. Succinate Dehydrogenase (SDH) Staining was used to evaluate the loss of hair cells. The relative expression of related proteins and genes was detected by Western blot and qRT-PCR. In diabetic mice, the outer hair cells were lost significantly. However, the loss of hair cells was delayed over-expression Trx. Moreover, the expression of PGC-1α, bcl-2 and LC3 was increased in Tg(+)-DM mice compared with Tg(-)-DM mice. The expression of ASK1, Txnip, GRP78, CHOP and p62 was decreased in Tg(+)-DM mice compared with Tg(-)-DM mice. Taken together, up-regulation Trx can protect cochlear hair cell from damage in diabetes. The underlying mechanism may be related to regulate ER stress through ASK1 and mitochondria pathway or autophagy via Txnip.

2021 ◽  
Author(s):  
Xiang Ren ◽  
Jin juan Lv ◽  
Yu zhen Fu ◽  
Na Zhang ◽  
Cheng hong Zhang ◽  
...  

Abstract Background Diabetes mellitus (DM) is a metabolic disorder characterized by chronic hyperglycemia. An association between DM and hearing impairment has been widely discussed. It’s essential to find effective prevetion or diagnosis of diabetic hearing loss. Thioredoxin (Trx) is a small molecule protein (12kDa) and plays biological functions such as anti-apoptotic, transcriptional regulation. In this study, our aim is to clarify the protective effect of Trx on diabetic hearing loss to find the early potential therapeutic target of diabetic hearing impairment in clinic in the future. Methods Trx transgenic(Tg) mice was used to induce diabetic model by intraperitoneal injected Streptozotocin (STZ) and with/without SF or PX12 treatment. Succinate Dehydrogenase (SDH) Staining was used to evaluate the loss of hair cells. The relative expression of related proteins and genes was detected by Western blot and qRT-PCR. Results In diabetic mice, the outer hair cells were lost significantly. However, the loss of hair cells was delayed over-expression Trx. Moreover, the expression of PGC-1α, bcl-2 and LC3 was increased in Tg(+)-DM mice compared with Tg(-)-DM mice. The expression of ASK1, Txnip, GRP78, CHOP and p62 was decreased in Tg(+)-DM mice compared with Tg(-)-DM mice. Conclusion Taken together, up-regulation Trx can protect cochlear hair cell from damage in diabetes. The underlying mechanism may be related to regulate ER stress through ASK1 and mitochondria pathway or autophagy via Txnip.


2019 ◽  
Vol 28 (24) ◽  
pp. 4103-4112 ◽  
Author(s):  
Wu Li ◽  
Yong Feng ◽  
Anhai Chen ◽  
Taoxi Li ◽  
Sida Huang ◽  
...  

Abstract ELMOD3, an ARL2 GTPase-activating protein, is implicated in causing hearing impairment in humans. However, the specific role of ELMOD3 in auditory function is still far from being elucidated. In the present study, we used the CRISPR/Cas9 technology to establish an Elmod3 knockout mice line in the C57BL/6 background (hereinafter referred to as Elmod3−/− mice) and investigated the role of Elmod3 in the cochlea and auditory function. Elmod3−/− mice started to exhibit hearing loss from 2 months of age, and the deafness progressed with aging, while the vestibular function of Elmod3−/− mice was normal. We also observed that Elmod3−/− mice showed thinning and receding hair cells in the organ of Corti and much lower expression of F-actin cytoskeleton in the cochlea compared with wild-type mice. The deafness associated with the mutation may be caused by cochlear hair cells dysfunction, which manifests with shortening and fusion of inner hair cells stereocilia and progressive degeneration of outer hair cells stereocilia. Our finding associates Elmod3 deficiencies with stereocilia dysmorphologies and reveals that they might play roles in the actin cytoskeleton dynamics in cochlear hair cells, and thus relate to hearing impairment.


2021 ◽  
Vol 22 (12) ◽  
pp. 6497
Author(s):  
Anna Ghilardi ◽  
Alberto Diana ◽  
Renato Bacchetta ◽  
Nadia Santo ◽  
Miriam Ascagni ◽  
...  

The last decade has witnessed the identification of several families affected by hereditary non-syndromic hearing loss (NSHL) caused by mutations in the SMPX gene and the loss of function has been suggested as the underlying mechanism. In the attempt to confirm this hypothesis we generated an Smpx-deficient zebrafish model, pointing out its crucial role in proper inner ear development. Indeed, a marked decrease in the number of kinocilia together with structural alterations of the stereocilia and the kinocilium itself in the hair cells of the inner ear were observed. We also report the impairment of the mechanotransduction by the hair cells, making SMPX a potential key player in the construction of the machinery necessary for sound detection. This wealth of evidence provides the first possible explanation for hearing loss in SMPX-mutated patients. Additionally, we observed a clear muscular phenotype consisting of the defective organization and functioning of muscle fibers, strongly suggesting a potential role for the protein in the development of muscle fibers. This piece of evidence highlights the need for more in-depth analyses in search for possible correlations between SMPX mutations and muscular disorders in humans, thus potentially turning this non-syndromic hearing loss-associated gene into the genetic cause of dysfunctions characterized by more than one symptom, making SMPX a novel syndromic gene.


Nature ◽  
1985 ◽  
Vol 315 (6021) ◽  
pp. 662-665 ◽  
Author(s):  
A. R. Cody ◽  
I. J. Russell

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Z. Jason Qian ◽  
Anthony J. Ricci

AbstractCurrent clinical interest lies in the relationship between hearing loss and cognitive impairment. Previous work demonstrated that noise exposure, a common cause of sensorineural hearing loss (SNHL), leads to cognitive impairments in mice. However, in noise-induced models, it is difficult to distinguish the effects of noise trauma from subsequent SNHL on central processes. Here, we use cochlear hair cell ablation to isolate the effects of SNHL. Cochlear hair cells were conditionally and selectively ablated in mature, transgenic mice where the human diphtheria toxin (DT) receptor was expressed behind the hair-cell specific Pou4f3 promoter. Due to higher Pou4f3 expression in cochlear hair cells than vestibular hair cells, administration of a low dose of DT caused profound SNHL without vestibular dysfunction and had no effect on wild-type (WT) littermates. Spatial learning/memory was assayed using an automated radial 8-arm maze (RAM), where mice were trained to find food rewards over a 14-day period. The number of working memory errors (WME) and reference memory errors (RME) per training day were recorded. All animals were injected with DT during P30–60 and underwent the RAM assay during P90–120. SNHL animals committed more WME and RME than WT animals, demonstrating that isolated SNHL affected cognitive function. Duration of SNHL (60 versus 90 days post DT injection) had no effect on RAM performance. However, younger age of acquired SNHL (DT on P30 versus P60) was associated with fewer WME. This describes the previously undocumented effect of isolated SNHL on cognitive processes that do not directly rely on auditory sensory input.


2021 ◽  
Vol 15 ◽  
Author(s):  
Pengcheng Xu ◽  
Longhao Wang ◽  
Hu Peng ◽  
Huihui Liu ◽  
Hongchao Liu ◽  
...  

Mutations in a number of genes encoding mitochondrial aminoacyl-tRNA synthetases lead to non-syndromic and/or syndromic sensorineural hearing loss in humans, while their cellular and physiological pathology in cochlea has rarely been investigated in vivo. In this study, we showed that histidyl-tRNA synthetase HARS2, whose deficiency is associated with Perrault syndrome 2 (PRLTS2), is robustly expressed in postnatal mouse cochlea including the outer and inner hair cells. Targeted knockout of Hars2 in mouse hair cells resulted in delayed onset (P30), rapidly progressive hearing loss similar to the PRLTS2 hearing phenotype. Significant hair cell loss was observed starting from P45 following elevated reactive oxygen species (ROS) level and activated mitochondrial apoptotic pathway. Despite of normal ribbon synapse formation, whole-cell patch clamp of the inner hair cells revealed reduced calcium influx and compromised sustained synaptic exocytosis prior to the hair cell loss at P30, consistent with the decreased supra-threshold wave I amplitudes of the auditory brainstem response. Starting from P14, increasing proportion of morphologically abnormal mitochondria was observed by transmission electron microscope, exhibiting swelling, deformation, loss of cristae and emergence of large intrinsic vacuoles that are associated with mitochondrial dysfunction. Though the mitochondrial abnormalities are more prominent in inner hair cells, it is the outer hair cells suffering more severe cell loss. Taken together, our results suggest that conditional knockout of Hars2 in mouse cochlear hair cells leads to accumulating mitochondrial dysfunction and ROS stress, triggers progressive hearing loss highlighted by hair cell synaptopathy and apoptosis, and is differentially perceived by inner and outer hair cells.


2021 ◽  
Vol 71 (1) ◽  
Author(s):  
Qin Wang ◽  
Wei Li ◽  
Cuiyun Cai ◽  
Peng Hu ◽  
Ruosha Lai

AbstractDamage to the cochlear sensory epithelium is a key contributor to noise-induced sensorineural hearing loss (SNHL). KCNQ4 plays an important role in the cochlear potassium circulation and outer hair cells survival. As miR-153 can target and regulate KCNQ4, we sought to study the role of miR-153 in SNHL. 12-week-old male CBA/J mice were exposed to 2–20 kHz broadband noise at 96 dB SPL to induce temporary threshold shifts and 101 dB SPL to induce permanent threshold shifts. Hearing loss was determined by auditory brainstem responses (ABR). Relative expression of miR-153 and KCNQ4 in mice cochlea were determined by Real-Time quantitative PCR. miR-153 mimics were co-transfected with wild type or mutated KCNQ4 into HEK293 cells. Luciferase reporter assay was used to validate the binding between miR-153 and KCNQ4. AAV-sp-153 was constructed and administrated intra-peritoneally 24- and 2-h prior and immediately after noise exposure to knockdown miR-153. The KCNQ4 is mainly expressed in outer hair cells (OHCs). We showed that the expression of KCNQ4 in mice cochlea was reduced and miR-153 expression was significantly increased after noise exposure compared to control. miR-153 bound to 3′UTR of KNCQ4, and the knockdown of miR-153 with the AAV-sp-153 administration restored KCNQ4 mRNA and protein expression. In addition, the knockdown of miR-153 reduced ABR threshold shifts at 8, 16, and 32 kHz after permanent threshold shifts (PTS) noise exposure. Correspondingly, OHC losses were attenuated with inhibition of miR-153. This study demonstrates that miR-153 inhibition significantly restores KNCQ4 in cochlea after noise exposure, which attenuates SNHL. Our study provides a new potential therapeutic target in the prevention and treatment of SNHL.


Author(s):  
Zu-Hong He ◽  
Song Pan ◽  
Hong-Wei Zheng ◽  
Qiao-Jun Fang ◽  
Kayla Hill ◽  
...  

Attenuation of noise-induced hair cell loss and noise-induced hearing loss (NIHL) by treatment with FK506 (tacrolimus), a calcineurin (CaN/PP2B) inhibitor used clinically as an immunosuppressant, has been previously reported, but the downstream mechanisms of FK506-attenuated NIHL remain unknown. Here we showed that CaN immunolabeling in outer hair cells (OHCs) and nuclear factor of activated T-cells isoform c4 (NFATc4/NFAT3) in OHC nuclei are significantly increased after moderate noise exposure in adult CBA/J mice. Consequently, treatment with FK506 significantly reduces moderate-noise-induced loss of OHCs and NIHL. Furthermore, induction of reactive oxygen species (ROS) by moderate noise was significantly diminished by treatment with FK506. In agreement with our previous finding that autophagy marker microtubule-associated protein light chain 3B (LC3B) does not change in OHCs under conditions of moderate-noise-induced permanent threshold shifts, treatment with FK506 increases LC3B immunolabeling in OHCs after exposure to moderate noise. Additionally, prevention of NIHL by treatment with FK506 was partially abolished by pretreatment with LC3B small interfering RNA. Taken together, these results indicate that attenuation of moderate-noise-induced OHC loss and hearing loss by FK506 treatment occurs not only via inhibition of CaN activity but also through inhibition of ROS and activation of autophagy.


2021 ◽  
Vol 22 (13) ◽  
pp. 6664
Author(s):  
Stella Chin-Shaw Tsai ◽  
Kuender D. Yang ◽  
Kuang-Hsi Chang ◽  
Frank Cheau-Feng Lin ◽  
Ruey-Hwang Chou ◽  
...  

Umbilical cord-derived mesenchymal stromal cells (UCMSCs) have potential applications in regenerative medicine. UCMSCs have been demonstrated to repair tissue damage in many inflammatory and degenerative diseases. We have previously shown that UCMSC exosomes reduce nerve injury-induced pain in rats. In this study, we characterized UCMSC exosomes using RNA sequencing and proteomic analyses and investigated their protective effects on cisplatin-induced hearing loss in mice. Two independent experiments were designed to investigate the protective effects on cisplatin-induced hearing loss in mice: (i) chronic intraperitoneal cisplatin administration (4 mg/kg) once per day for 5 consecutive days and intraperitoneal UCMSC exosome (1.2 μg/μL) injection at the same time point; and (ii) UCMSC exosome (1.2 μg/μL) injection through a round window niche 3 days after chronic cisplatin administration. Our data suggest that UCMSC exosomes exert protective effects in vivo. The post-traumatic administration of UCMSC exosomes significantly improved hearing loss and rescued the loss of cochlear hair cells in mice receiving chronic cisplatin injection. Neuropathological gene panel analyses further revealed the UCMSC exosomes treatment led to beneficial changes in the expression levels of many genes in the cochlear tissues of cisplatin-injected mice. In conclusion, UCMSC exosomes exerted protective effects in treating ototoxicity-induced hearing loss by promoting tissue remodeling and repair.


2018 ◽  
Vol 47 (5) ◽  
pp. 1883-1897 ◽  
Author(s):  
Weiming Yan ◽  
Pan Long ◽  
Tao Chen ◽  
Wei Liu ◽  
Lu Yao ◽  
...  

Background/Aims: Our laboratory discovered a Kunming mouse with enormous electroretinogram (ERG) defects. Its auditory brainstem response (ABR) threshold was significantly elevated and closely resembled the features of Usher syndrome (USH). This study sought to cross these USH-like mice (named KMush/ush mice) with CBA/CaJ mice to establish recombinant inbred strains and identify their phenotypes and genotypes. Methods: KMush/ush mice were crossed with CBA/CaJ mice to establish inbred strains by sibling mating. ERG, ABR, ocular fundus morphology, histological examinations of the retina and inner ear, quantitative real-time polymerase chain reaction, western blotting, and exon sequencing were performed to assess the phenotypes and genotypes of the offspring strains. Results: The F1 hybrids from crossing KMush/ush and CBA/CaJ mice had normal ERG and ABR responses. The F2 offspring from intercrossing the F1 mice showed a segregation of the retinitis pigmentosa (RP) and hearing loss phenotypes. The CBA-1ush/ush mice had an RP phenotype that was characterized by a vanished ERG waveform and loss of the outer nuclear layer. Their Pde6b gene had a nonsense mutation that resulted in the failure of protein production in western blotting. However, the ABR threshold of this strain of mice was normal. The CBA-2ush/ush mice had normal retinal function and architecture. Their ABR threshold was increased, with a dramatic degeneration of the stereocilia bundles in the outer hair cells of the inner ear. Whole exome sequencing and exon sequencing revealed a deletion of one base pair in exon 31 of the Adgrv1 gene, which would result in the premature termination of protein encoding. The level of Adgrv1 mRNA was reduced in the CBA-2ush/ush mice. The CBA-3ush/ush mice had phenotypes of RP, elevated ABR threshold, and degeneration of the stereocilia bundles in the outer hair cells. They were closely associated with the nonsense mutations of Pde6b and Adgrv1, respectively. Conclusion: We isolated a mouse strain with hearing loss from inbred mice with retinal degeneration and established it as a recombinant inbred strain with a spontaneous mutation in Adgrv1, the human Usher syndrome 2C gene. The retinal degeneration was cause by a mutation in Pde6b, while the hearing loss was caused by a mutation in Adgrv1.


Sign in / Sign up

Export Citation Format

Share Document