scholarly journals Research on the Dynamic Compensation Method of the Shock Wave's Evaluation Pressure Sensor

2020 ◽  
Author(s):  
Wei Wang

Abstract Due to the steep and changing fast rising edge of explosion shock wave signal, it asks for good dynamic characteristic of sensor and test system. As far as the development of the sensor level, they are difficult to achieve dynamic characteristic requirement of approximate distortionless transmission, so cause a large dynamic error in the actual test. This paper, aiming at providing theoretical support for technology guarantee and service of the shock wave testing system of national shooting range, conducts a research on the method of dynamic characteristic compensation of pressure sensor facing the power evaluation of the blast shock wave. The research proposes and studies the filter design method of dynamic compensation of pressure sensor based on PFQPSO (the progressive function quantum-behaved particle swarm optimization) algorithm, which belongs to inverse modeling. The dynamic compensation can be realized without knowing the model of sensor, so the extra error caused by dynamic modeling of sensors can be avoided. using 8510 series sensor can be used with lower natural frequency and lower measurement range from Endevco Company, this research has had experiment and modeling on the dynamic characteristics of shock tubes as well as design of dynamic compensation filter. Based on the analysis and confirmation, this study illustrates the possibility and effectiveness of this method.

2020 ◽  
Author(s):  
Wei Wang

Abstract Due to the steep and changing fast rising edge of explosion shock wave signal, it asks for good dynamic characteristic of sensor and test system. As far as the development of the sensor level, they are difficult to achieve dynamic characteristic requirement of approximate distortionless transmission, so cause a large dynamic error in the actual test. This paper, aiming at providing theoretical support for technology guarantee and service of the shock wave testing system of national shooting range, conducts a research on the method of dynamic characteristic compensation of pressure sensor facing the power evaluation of the blast shock wave. The research proposes and studies the filter design method of dynamic compensation of pressure sensor based on PFQPSO (the progressive function quantum-behaved particle swarm optimization) algorithm, which belongs to inverse modeling. The dynamic compensation can be realized without knowing the model of sensor, so the extra error caused by dynamic modeling of sensors can be avoided. using 8510 series sensor can be used with lower natural frequency and lower measurement range from Endevco Company, this research has had experiment and modeling on the dynamic characteristics of shock tubes as well as design of dynamic compensation filter. Based on the analysis and confirmation, this study illustrates the possibility and effectiveness of this method.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Bo Xu ◽  
Tailin Han ◽  
Hong Liu ◽  
Xiao Wang ◽  
Mingchi Ju

In the process of transient test, due to the insufficient bandwidth of the pressure sensor, the test data is inaccurate. Firstly, based on the projection of the shock tube test signal in the sparse domain, the feature expression of the signal sample is obtained. Secondly, the problem of insufficient bandwidth is solved by inverse modeling of sensor dynamic compensation system based on swarm intelligence algorithm. In this paper, the method is used to compensate the shock tube test signals of the 85XX series pressure sensors made by the Endevco company of the United States, the working bandwidth of the sensor is widened obviously, the rise time of the pressure signal can be compensated to 12.5 μs, and the overshoot can be reduced to 8.96%. The repeatability of dynamic compensation is verified for the actual gun muzzle shock wave test data, the results show that the dynamic compensation can effectively recover the important indexes such as overpressure peak value and positive pressure action time, and the original shock wave signal is recovered from the high resonance data.


2003 ◽  
Vol 39 (8) ◽  
pp. 695 ◽  
Author(s):  
G. Jovanovic-Dolecek ◽  
J. Diaz-Carmona

2011 ◽  
Vol 128-129 ◽  
pp. 181-184
Author(s):  
You Lian Zhu ◽  
Cheng Huang

Design of morphological filter greatly depends on morphological operations and structuring elements selection. A filter design method used median closing morphological operation is proposed to enhance the image denoising ability and the PSO algorithm is introduced for structural elements selecting. The method takes the peak value signal-to-noise ratio (PSNR) as the cost function and may adaptively build unit structuring elements with zero square matrix. Experimental results show the proposed method can effectively remove impulse noise from a noisy image, especially from a low signal-to-noise ratio (SNR) image; the noise reduction performance has obvious advantages than the other.


Author(s):  
Jialong Zhang ◽  
Jianguo Yan ◽  
Pu Zhang ◽  
Xiaoqiao Qi ◽  
Maolong Lü

Aiming at the high-speed flight of the UAVs cooperative formation, when a single UAV has occurred, need to exit the formation flight and be close or super close to form of the formation quickly. A fast close cooperative formation controller design method is proposed to make up for low the fighting robustness, and be shortcomings of timeliness poorly and analyze the dynamic characteristic of UAV formation flight. Taking the external factors known into consideration, setting up for the longitude maneuver of nonlinear thrust vector and unsteady aerodynamic model, according to the formation velocity, flat tail rudder angle and thrust vector and pitch angle velocity for corresponding input commend signals for the controller to research the dynamic characteristic of UAV formation flight. Meanwhile, the formation flight distance error is the convergence to a fixed value, and the stability of the cooperative formation flight is good. The simulation of results show that the controller can effectively improve the speed of the close or super close to formation, and maintain the stability of the formation flight, which provides a method of the close or super close formation flight controller design.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Yifu Feng ◽  
Zhi-Min Li ◽  
Xiao-Heng Chang

This paper investigates the problem of H∞ filtering for class discrete-time Lipschitz nonlinear singular systems with measurement quantization. Assume that the system measurement output is quantized by a static, memoryless, and logarithmic quantizer before it is transmitted to the filter, while the quantizer errors can be treated as sector-bound uncertainties. The attention of this paper is focused on the design of a nonlinear quantized H∞ filter to mitigate quantization effects and ensure that the filtering error system is admissible (asymptotically stable, regular, and causal), while having a unique solution with a prescribed H∞ noise attenuation level. By introducing some slack variables and using the Lyapunov stability theory, some sufficient conditions for the existence of the nonlinear quantized H∞ filter are expressed in terms of linear matrix inequalities (LMIs). Finally, a numerical example is presented to demonstrate the effectiveness of the proposed quantized filter design method.


2011 ◽  
Vol 2011 (CICMT) ◽  
pp. 000043-000049
Author(s):  
Ehab Abousaif ◽  
Aicha Elshabini ◽  
Fred Barlow

Microwave filters are generally designed with microwave transmission lines. However these filters are typically lossy. The waveguide filters using conventional inductive elements such as metal rods and transverse diaphragm have some disadvantages such as complicated structure, high cost and they can be hard to mass produce. But they also have many advantages such as the capability of high power transmission, a non-radiating structure, and their thermal efficiency. A novel waveguide inductive strip filter embedded in LTCC is introduced in this paper where the disadvantages of the conventional waveguide filters are eliminated. By using LTCC technology, the cost will typically be lower, it can easily be mass produce, and these designs can also be tested easily. The equivalent T-network parameters of the inductive strip mounted in a waveguide and embedded in LTCC substrate were derived. A new iterative technique was used based on the Variation principle. The design formulas and curves of the filter were presented. The design method of the filter was derived by applying the equivalent network of the inductive strip to the usual method of the filter design. A complete set of new curves relating the various filter parameters were introduced. Similar curves can be derived to design similar filters for any frequency band using any dielectric material. Three-dimensional electromagnetic field modeling and simulation was carried out using HFSS (High Frequency Structure Simulator). An optimization process was done for the designed filter. The modeling and the optimization S-parameters curves are shown. This paper introduces a new methodology of designing waveguide inductive strip filters embedded in LTCC. The design methodology was derived and presented with formulas and curves. The design steps are explained and verified by examples and results.


Sign in / Sign up

Export Citation Format

Share Document