scholarly journals Efficient Treatment of Fish Intestinal Parasites Applying Biocompatible Membrane-penetrating Oral Drug Delivery Nanoparticles

Author(s):  
Patrick D. Mathews ◽  
Ana C.M.F. Patta ◽  
Rafael R.M. Madrid ◽  
Carlos A.B. Ramirez ◽  
Omar Mertins

Abstract Nanodelivery of drugs aims to ensure drug stability in the face of adverse biochemical conditions in the course of administration, concomitant with appropriate pharmacological action provided by delivery at the targeted site. In this study, the application potential of nanoparticles produced with biopolymers chitosan-N-arginine and alginate as an oral drug delivery material is evaluated. Being both macromolecules weak polyelectrolytes, the bioparticle presents strong thermodynamic interaction with a biological model membrane consisting of charged lipid liposome bilayer, leading to membrane disruption and membrane penetration of the bioparticles in ideal conditions of pH corresponding to the oral route. The powder form of the bioparticle was obtained by lyophilization and with a high percentage of entrapment of the anthelmintic drug praziquantel. In vivo studies were conducted with oral administration to Corydoras schwartzi fish with high intensity of intestinal parasites infection. The in vivo experiments confirmed the mucoadhesive and revealed membrane-penetrating properties of the bioparticle by translocating the parasite cyst, which provided target drug release and reduction of over 97% of the fish intestinal parasites. Thus, it was evidenced that the bioparticle was effective in transporting and releasing the drug to the target, providing an efficient treatment.

1992 ◽  
Vol 19 (1-3) ◽  
pp. 131-144 ◽  
Author(s):  
Waleed S.W. Shalaby ◽  
William E. Blevins ◽  
Kinam Park

Author(s):  
Sunandita Sarker ◽  
Ryan Jones ◽  
Gabriel Chow ◽  
Benjamin Terry

Abstract Despite being the preferred route of drug administration, the oral formulation of biological drugs is limited due to its intrinsic instability, low permeability, and physical, chemical and immunological barriers. Various innovative swallowable technologies such as drug-loaded, dissolvable microneedles, mucoadhesive patches, and various microdevices present unique drug-carrying capabilities. The current work presents a novel soft stent platform that can facilitate contact between the small intestine tissue and drug carriers to enhance drug absorption and increase residence time. This study aims to prove the concept of this novel platform and determine if the soft stent will retain orally to the ileocecal valve longer than a capsule-shaped bolus. Benchtop studies on an intestinal simulator showed successful retention of the soft stent compared to a control capsule. In vivo studies in pig models also showed that the soft stent was retained longer than the control capsule. Overall, this study shows promise that this novel platform could be used for oral drug delivery of biologics.


Author(s):  
Patrick D. Mathews ◽  
Ana C. M. F. Patta ◽  
Rafael R. M. Madrid ◽  
Carlos A. B. Ramirez ◽  
Barbara V. Pimenta ◽  
...  

2019 ◽  
Vol 9 (01) ◽  
pp. 01-09
Author(s):  
Satyajit Panda ◽  
K Priyanka ◽  
R Varaprasad ◽  
Snigdha Pattnaik

Gastro-retentive drug delivery systems (GRDDS) like gastro-retentive microspheres have gained immense popularity in the field of oral drug delivery. It is a widely employed approach to retain the dosage form in the stomach for an extended period of time and release the drug slowly that can address many challenges associated with conventional oral delivery, including poor bioavailability. Different innovative approaches like magnetic field assisted gastro-retention, swelling systems, mucoadhesion techniques, floating systems with or without effervescence are being applied to fabricate gastroretentive microspheres. Apart from in-vitro characterization, successful gastro-retentive microspheres development demands well designed in-vivo study to establish enhanced gastro-retention and prolonged drug release. Gama scintigraphy and MRI are popular techniques to evaluate in-vivo gastric residence time. However, checking of their overall in-vivo efficacy still remains a major challenge for this kind of dosage form, especially in small animals like mice or rat. Reported in-vivo studies with beagle dogs, rabbits, and human subjects are only a handful in spite of a large number of encouraging in-vitro results. In spite of the many advantages, high subject variations in gastrointestinal physiological condition, effect of food, and variable rate of gastric emptying time are the challenges that limit the availability of gastro-retentive microspheres in the market.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Farzaneh Lotfipour ◽  
Shahriar Shahi ◽  
Afsaneh Farjami ◽  
Sara Salatin ◽  
Mohammad Mahmoudian ◽  
...  

The emerging science of nanotechnology sparked a research attention in its potential benefits in comparison to the conventional materials used. Oral products prepared via nanoparticles (NPs) have garnered great interest worldwide. They are used commonly to incorporate nutrients and provide antimicrobial activity. Formulation into NPs can offer opportunities for targeted drug delivery, improve drug stability in the harsh environment of the gastrointestinal (GI) tract, increase drug solubility and bioavailability, and provide sustained release in the GI tract. However, some issues like the management of toxicity and safe handling of NPs are still debated and should be well concerned before their application in oral preparations. This article will help the reader to understand safety issues of NPs in oral drug delivery and provides some recommendations to the use of NPs in the drug industry.


2021 ◽  
Author(s):  
Alla Krasnoshtanova ◽  
Anastasiya Bezyeva

"The oral route of drug inclusion is the most convenient for the patient. In addition to ease of use, this method of drug inclusion has such advantages as non-invasiveness of inclusion, absence of complications during injection; comparative safety for the organism due to the passage of the active substance and auxiliary compounds through the gastrointestinal tract; the possibility of introducing larger doses of the drug at one time. However, despite the obvious advantages, the oral route of inclusion has a number of significant disadvantages that significantly limit its use for a number of drugs. Among them are: relatively slow therapeutic action of the drug with this route of inclusion; the aggressive effect of a number of drugs (for example, antibiotics) on the gastrointestinal tract; low bioavailability of a number of substances (especially high molecular weight hydrophilic compounds), caused by poor permeability of the intestinal epithelium for hydrophilic and large molecules, as well as enzymatic and chemical degradation of the active substance in the gastrointestinal tract. There are various approaches used in the development of oral drug delivery systems. In particular, for the targeted delivery of drugs, it is proposed to use nano- and microcapsules with mucoadhesive properties. Among the polymers used for the synthesis of these microparticles, it is preferable to use pH-dependent, gelable biopolymers that change their structure depending on the acidity of the environment. Microcapsules obtained from compounds with the above properties are capable of protecting the active substance (or from the active substance) in the stomach environment and ensuring its release in the intestine. These properties are possessed by such polysaccharides as alginate, pectin, carrageenan, xylan, etc. The listed biopolymers are non-toxic, biocompatible, and biodegradable, which makes microparticles containing these polysaccharides promising as oral drug delivery systems. To impart mucoadhesive properties to nanoparticles, complexes of the listed polymers with chitosan are used. In this research, pectin, a polysaccharide formed mainly by residues of galacturonic acid, was used as a structural polymer. The concentrations of substances in the initial solutions were selected that were optimal for the synthesis of microcapsules. The main parameters for evaluating the resulting microparticles were the size of the capsules (less than 1 μm for oral inclusion), the zeta-potential, showing the tendency of the microparticles to stick together, and the completeness of the binding of the microparticles to chitosan. It was found that the optimal solutions for the synthesis of microparticles are: 15.7 ml of a solution of pectin 0.093% by weight, 3.3 ml of a solution of chitosan 0.07% by weight and 1.0 ml of a solution of CaCl2 20 mM. The diameter of the microparticles obtained by this method was 700-800 nm, and the value of their zetta-potential, equal to - (34 ± 3) mV, does not cross the particle adhesion threshold. It was also found that the synthesis of microparticles at these concentrations of calcium chloride provides the most complete binding of chitosan to their surface, which increases the mucoadhesive properties of microparticles."


Pharmaceutics ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 416 ◽  
Author(s):  
Schneider ◽  
Koziolek ◽  
Weitschies

More than 50 years ago, the first concepts for gastroretentive drug delivery systems were developed. Despite extensive research in this field, there is no single formulation concept for which reliable gastroretention has been demonstrated under different prandial conditions. Thus, gastroretention remains the holy grail of oral drug delivery. One of the major reasons for the various setbacks in this field is the lack of predictive in vitro and in vivo test methods used during preclinical development. In most cases, human gastrointestinal physiology is not properly considered, which leads to the application of inappropriate in vitro and animal models. Moreover, conditions in the stomach are often not fully understood. Important aspects such as the kinetics of fluid volumes, gastric pH or mechanical stresses have to be considered in a realistic manner, otherwise, the gastroretentive potential as well as drug release of novel formulations cannot be assessed correctly in preclinical studies. This review, therefore, highlights the most important aspects of human gastrointestinal physiology and discusses their potential implications for the evaluation of gastroretentive drug delivery systems.


2020 ◽  
Vol 13 (3) ◽  
pp. 184-191
Author(s):  
Prerna Kaushik ◽  
Deepak Kaushik

: The reason that the oral route attained such acceptance may be ascribed to its affluence of administration. Over the years, patient convenience- oriented exploration in the area of drug delivery has introduced potential innovative medicine delivery systems. The elegant drug delivery system is an amalgamation of science and dexterity with therapeutic prospect and presentability. It involves the administration of medications in a groundbreaking fashion with the assistance of cosmetics, wearable devices and oral drug delivery system which can also be used for ornamental purposes. Out of which, therapeutic chewing gum offers a highly suitable and amenable technique of dosing medications comprising children and elderlies. It is a potentially convenient means of administering medications either locally or systematically via the oral cavity. It bids innumerable gains over conventional drug delivery methods. Moreover, medicinal chewing gums involve the dynamic and constant masticatory actions for drug release. Currently, enriched expertise has made it promising to advance and fabricate medicated chewing gum with predefined properties and it could be a marketable triumph in the future. Apprehending this, several investigators and pharmaceutical companies are now engaged in developing innovative practices vis-à-vis medicated chewing gums by filing several patents in this area. The present manuscript also delivers a gestalt of various patented technology platforms based on different methods/ mechanisms employed for the preparation of medicated chewing gums.


2010 ◽  
Vol 8 (1) ◽  
pp. 225-238 ◽  
Author(s):  
Hong Yuan ◽  
Lin-Juan Lu ◽  
Yong-Zhong Du ◽  
Fu-Qiang Hu

2019 ◽  
Vol 4 (2) ◽  
pp. 121-129
Author(s):  
Satya Sankar Sahoo ◽  
Chandu Babu Rao

Formulation of poorly water-soluble drugs for oral drug delivery has always been a difficult task for formulation scientists. Lurasidone hydrochloride is one such agent which is used to control bipolar depre-ssion. The objective of this study was to formulate and optimize lurasi-done nanosuspension, further formulating optimized nanosuspensions as fast disintegrating tablets for improved patient compliance. In the present study, lurasidone nanosuspension was prepared by nanomilling technique. Optimized nanosuspension has mean particle diameter of 248.9 nm, polydispersity index of 0.127 and zeta potential of 18.1 mV. The lyophilized optimized nanocrystals, optimize nanosuspension as granulating fluid and as top spraying dispersion for granulation in fluid bed granulator being used to formulate fast disintegrating tablets with suitable super disintegrant. Croscarmellose sodium was found to be best superdisintegrant compared to sodium starch glycolate and crospovidone, as its acts by both mechanism swelling and wicking. Its swells 4-8 folds in less than 10 s. Many folds increase in the rate of drug release observed compare to micronized lurasidone and marketed product. There was no change in crystalline nature after nanomilling as characterized by XRD and FTIR, and it was found to be chemically stable with high drug content. The developed fast disintegrating tablets would be an alternative better formulation than its conventional formulation to address its bioavailability issue and for improved patient compliance. However, this should be further confirmed by appropriate in vivo studies.


Sign in / Sign up

Export Citation Format

Share Document