scholarly journals First Complete Genome Sequence of Brucella abortus 2308 isolated from an abortion storm in a dairy farm in India

Author(s):  
Amit Kumar ◽  
Malyaj R Prajapati ◽  
Surendra Upadhyay ◽  
Anamika Bhordia ◽  
Vinod Kumar Singh ◽  
...  

Abstract The present report communicates the first complete genome sequence of Brucella abortus 2308 strain isolated from a an abortion storm in a dairy farm located at Kanpur, Uttar Pradesh in India. It caused the last trimester abortions of 32 animals out of 100 cows in a dairy over a period of 60 days. The bacteria were isolated in pure culture from the placenta of aborted cows. The genome sequence length of isolated bacteria is 3,285,606 bp with a 57.25 % GC content, an N50 value of 296,426, L50 value of 4 containing 3,119 coding DNA sequences (CDSs), 49 tRNAs, 1 transfer messenger RNA (mRNA), and 3 rRNA genes. It is the first report of Brucella abortus 2308 isolation and complete genome sequence from Indian subcontinent.

2019 ◽  
Vol 8 (24) ◽  
Author(s):  
M. Sadequl Islam ◽  
Mohamed E. El Zowalaty ◽  
Arnoud H. M. van Vliet ◽  
Siddhartha Thakur ◽  
M. Minara Khatun ◽  
...  

We report the genome sequence of Brucella abortus biovar 3 strain BAU21/S4023, isolated from a dairy cow that suffered an abortion in Savar, Dhaka, Bangladesh. The genome sequence length is 3,244,234 bp with a 57.2% GC content, 3,147 coding DNA sequences (CDSs), 51 tRNAs, 1 transfer messenger RNA (tmRNA), and 3 rRNA genes.


2018 ◽  
Vol 6 (7) ◽  
Author(s):  
Amar Bouam ◽  
Anthony Levasseur ◽  
Maryline Bonnet ◽  
Laurence Borand ◽  
Charles Van Goethem ◽  
...  

ABSTRACT Mycobacterium sp. strain 4858 is a nontuberculous mycobacterium isolated from sputum in a Cambodian patient with a pulmonary infection. We report the first complete 5.6-Mbp-long genome sequence of Mycobacterium strain 4858, with 68.24% GC content, carrying 5,255 protein-coding genes, 47 tRNAs, and 3 rRNA genes.


2018 ◽  
Vol 7 (12) ◽  
Author(s):  
Derrick C. Scott ◽  
Kiesha Wilson ◽  
Keshawn Ross ◽  
Damyen Ingram ◽  
Tajah Lewter ◽  
...  

The complete genome sequence of Caulobacter vibrioides strain CB1 consists of a chromosome of 4,137,285 bp, with a GC content of 67.2% and 3,990 coding DNA sequences. This strain contains the typical genome rearrangement that is characteristic of the Caulobacter strains that are currently sequenced.


2018 ◽  
Vol 6 (4) ◽  
Author(s):  
Amar Bouam ◽  
Anthony Levasseur ◽  
Maryline Bonnet ◽  
Laurence Borand ◽  
Charles Van Goethem ◽  
...  

ABSTRACT Mycobacterium sp. strain 3519A is a nontuberculous mycobacterium isolated from sputum from a Cambodian patient with a pulmonary infection. We report here the first complete 7.3-Mbp-long genome sequence of Mycobacterium sp. 3519A with 66.35% GC content, encoding 7,029 protein-coding genes, 50 tRNAs, and 5 rRNA genes.


2021 ◽  
Vol 10 (48) ◽  
Author(s):  
Yusuke Ogata ◽  
Mitsuo Sakamoto ◽  
Naveen Kumar ◽  
Moriya Ohkuma ◽  
Masahira Hattori ◽  
...  

Here, we report the complete genome sequence of Megamonas funiformis strain 1CBH44, which was isolated from the feces of a healthy Japanese person. The genome consists of a circular chromosome (2,310,709 bp, with a GC content of 31.5%) and possesses 2,170 putative protein-coding genes, 18 rRNA genes, and 54 tRNA genes.


2018 ◽  
Vol 7 (17) ◽  
Author(s):  
Derrick C. Scott ◽  
LaTia Scott ◽  
Kiesha Wilson ◽  
Keshawn Ross ◽  
Damyen Ingram ◽  
...  

The complete genome of Caulobacter vibrioides strain CB2 consists of a 4,123,726-bp chromosome, a GC content of 67.2%, and 3,896 coding DNA sequences. It has no rearrangements but numerous indels relative to the reference NA1000 genome.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
So-Ra Han ◽  
Byeollee Kim ◽  
Jong Hwa Jang ◽  
Hyun Park ◽  
Tae-Jin Oh

Abstract Background The Arthrobacter group is a known set of bacteria from cold regions, the species of which are highly likely to play diverse roles at low temperatures. However, their survival mechanisms in cold regions such as Antarctica are not yet fully understood. In this study, we compared the genomes of 16 strains within the Arthrobacter group, including strain PAMC25564, to identify genomic features that help it to survive in the cold environment. Results Using 16 S rRNA sequence analysis, we found and identified a species of Arthrobacter isolated from cryoconite. We designated it as strain PAMC25564 and elucidated its complete genome sequence. The genome of PAMC25564 is composed of a circular chromosome of 4,170,970 bp with a GC content of 66.74 % and is predicted to include 3,829 genes of which 3,613 are protein coding, 147 are pseudogenes, 15 are rRNA coding, and 51 are tRNA coding. In addition, we provide insight into the redundancy of the genes using comparative genomics and suggest that PAMC25564 has glycogen and trehalose metabolism pathways (biosynthesis and degradation) associated with carbohydrate active enzyme (CAZymes). We also explain how the PAMC26654 produces energy in an extreme environment, wherein it utilizes polysaccharide or carbohydrate degradation as a source of energy. The genetic pattern analysis of CAZymes in cold-adapted bacteria can help to determine how they adapt and survive in such environments. Conclusions We have characterized the complete Arthrobacter sp. PAMC25564 genome and used comparative analysis to provide insight into the redundancy of its CAZymes for potential cold adaptation. This provides a foundation to understanding how the Arthrobacter strain produces energy in an extreme environment, which is by way of CAZymes, consistent with reports on the use of these specialized enzymes in cold environments. Knowledge of glycogen metabolism and cold adaptation mechanisms in Arthrobacter species may promote in-depth research and subsequent application in low-temperature biotechnology.


2019 ◽  
Vol 8 (37) ◽  
Author(s):  
Gareth T. Little ◽  
Muhammad Ehsaan ◽  
Christian Arenas-López ◽  
Kamran Jawed ◽  
Klaus Winzer ◽  
...  

The hydrogen-utilizing strain Cupriavidus necator H16 (DSM 428) was sequenced using a combination of PacBio and Illumina sequencing. Annotation of this strain reveals 6,543 protein-coding genes, 263 pseudogenes, 64 tRNA genes, and 15 rRNA genes.


2018 ◽  
Vol 6 (22) ◽  
Author(s):  
Haifeng Chen ◽  
Shiliang Wang ◽  
Weimin Wang

ABSTRACT We report here the complete genome sequence of a GII.6 norovirus strain detected in a clinical fecal specimen from the United States. The virus genome has a length of 7,547 bp and a GC content of 50.1%. Complete norovirus genotyping of the full-genome sequence identified the virus genotype as GII.P6_GII.6.


PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e4127 ◽  
Author(s):  
Zhigang Tu ◽  
Hongyue Li ◽  
Xiang Zhang ◽  
Yun Sun ◽  
Yongcan Zhou

Vibrio harveyi is a Gram-negative, halophilic bacterium that is an opportunistic pathogen of commercially farmed marine vertebrate species. To understand the pathogenicity of this species, the genome of V. harveyi QT520 was analyzed and compared to that of other strains. The results showed the genome of QT520 has two unique circular chromosomes and three endogenous plasmids, totaling 6,070,846 bp with a 45% GC content, 5,701 predicted ORFs, 134 tRNAs and 37 rRNAs. Common virulence factors, including ACF, IlpA, OmpU, Flagellin, Cya, Hemolysin and MARTX, were detected in the genome, which are likely responsible for the virulence of QT520. The results of genomes comparisons with strains ATCC 33843 (392 (MAV)) and ATCC 43516 showed that greater numbers genes associated with types I, II, III, IV and VI secretion systems were detected in QT520 than in other strains, suggesting that QT520 is a highly virulent strain. In addition, three plasmids were only observed in the complete genome sequence of strain QT520. In plasmid p1 of QT520, specific virulence factors (cyaB, hlyB and rtxA) were identified, suggesting that the pathogenicity of this strain is plasmid-associated. Phylogenetic analysis of 12 complete Vibrio sp. genomes using ANI values, core genes and MLST revealed that QT520 was most closely related to ATCC 33843 (392 (MAV)) and ATCC 43516, suggesting that QT520 belongs to the species V. harveyi. This report is the first to describe the complete genome sequence of a V. harveyi strain isolated from an outbreak in a fish species in China. In addition, to the best of our knowledge, this report is the first to compare the V. harveyi genomes of several strains. The results of this study will expand our understanding of the genome, genetic characteristics, and virulence factors of V. harveyi, setting the stage for studies of pathogenesis, diagnostics, and disease prevention.


Sign in / Sign up

Export Citation Format

Share Document