scholarly journals Discovery of Diagnostic and Therapeutic Targets For Vascular Injury Induced By Methylglyoxal Using Proteomics

Author(s):  
Ming-Zhang Xie ◽  
Yan-Ting Liu ◽  
Min Zhang ◽  
Meng-Meng Zhao ◽  
Ke-Tao Sun ◽  
...  

Abstract Background: Methylglyoxal, a byproduct of diabetes or the consumption of a high-carbohydrate diet, is associated with vascular injury; however, its molecular mechanisms remain unclear. We aimed to systematically characterize molecular profiles and offer unique insights into new disease pathways, thereby contributing to understanding the mechanisms and pathogenesis of vascular injury-related cardiovascular diseases. Methods: Cell survival assays were performed to assess DNA damage; oxidative stress was confirmed by colorimetric assays and quantitative fluorescence, and cyclooxygenase-2 and the mitogen-activated protein kinase pathways were assessed using ELISA. Differentially expressed proteins were quantitated via TMT-based LC-MS/MS and bioinformatics analysis, and confirmed by parallel reaction monitoring. Results: Vascular injury was assessed through colorimetric assays, quantitative fluorescence, ELISA, and survival assays. Of the 4029 proteins identified, 368 were differentially expressed after methylglyoxal treatment, compared with the negative control; 31 were defined as biomarkers or therapeutic targets according to the Gene Ontology Program, Kyoto Encyclopedia of Genes and Genomes, and protein-protein interaction network analyses. Sixteen proteins were significantly (p<0.05) upregulated (>1.5-fold change) and 15 were dramatically downregulated (<0.667-fold change) and confirmed through parallel reaction monitoring.Conclusions: The 31 proteins identified as biomarkers or therapeutic targets may contribute to vascular dysfunction through DNA damage, oxidative stress, inflammation, autophagy, hypertension, endothelial dysfunction, vascular remodeling, and the coagulation cascade. Additionally, new disease pathways involving the Wnt, ErBb, and BMP signaling pathways were identified; all provide scope as potential underlying molecular mechanisms. Therefore, the 31 proteins identified warrant further development as new therapeutic or diagnostic targets for vascular diseases.

PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9941
Author(s):  
Chuan He ◽  
Simiao Hu ◽  
Wanxing Zhou

Background This study aimed to develop an analytical method using liquid chromatography tandem mass spectrometry (LC-MS/MS) for the determination of angiotensin (Ang) I, Ang (1-9), Ang II, Ang (1-7), Ang (1-5), Ang III, Ang IV in human umbilical vein endothelial cell (HUVEC) culture supernatant. Methods HUVEC culture supernatant was added with gradient concentrations (0.05–1,000 ng/ml) of standard solutions of the Ang peptides. These samples underwent C18 solid-phase extraction and separation using a preconcentration nano-liquid chromatography mass spectrometry system. The target peptides were detected by a Q Exactive quadrupole orbitrap high-resolution mass spectrometer in the parallel reaction monitoring mode. Ang converting enzyme (ACE) in HUVECs was silenced to examine Ang I metabolism. Results The limit of detection was 0.1 pg for Ang II and Ang III, and 0.5 pg for Ang (1-9), Ang (1-7), and Ang (1-5). The linear detection range was 0.1–2,000 pg (0.05–1,000 ng/ml) for Ang II and Ang III, and 0.5–2,000 pg (0.25–1,000 ng/ml) for Ang (1-9) and Ang (1-5). Intra-day and inter-day precisions (relative standard deviation) were <10%. Ang II, Ang III, Ang IV, and Ang (1-5) were positively correlated with ACE expression by HUVECs, while Ang I, Ang (1-7), and Ang (1-9) were negatively correlated. Conclusion The nanoflow liquid chromatography-parallel reaction monitoring mass spectrometry-based methodology established in this study can evaluate the Ang peptides simultaneously in HUVEC culture supernatant.


Sign in / Sign up

Export Citation Format

Share Document