scholarly journals Extension of the TOPSIS Method for Decision-making Problem Under Dual Hesitant Fuzzy Language Environment

Author(s):  
Nian Zhang ◽  
Qin Zhou ◽  
Guiwu Wei

Abstract In order to comprehensively and actually describe the evaluation process, the dual hesitant fuzzy linguistic (DHFL) set is introduced in this paper, which includes more decision-making information, such as fuzzy state, hesitant process and language information. Specifically, some basic concepts of DHFL set are illustrated and a new distance measure for DHFL information is proposed, which is suitable for overcoming the irrational traditional methodology upon the general distance measure and basic probability concepts. Then, technique for order preference by similarity to ideal solution (TOPSIS) method is extended in dual hesitant fuzzy language environment, a novel TOPSIS method using the DHFL set is presented. Finally, the sensitivity analysis is performed to verify the feasibility and stability of the developed method, then the advantages of the proposed method are also confirmed by detailed comparative analysis.

Symmetry ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 905 ◽  
Author(s):  
Han ◽  
Li ◽  
Song ◽  
Zhang ◽  
Wang

A decision-making environment is full of uncertainty and complexity. Existing tools include fuzzy sets, soft sets, intuitionistic fuzzy sets, Pythagorean fuzzy sets (PFSs) and so on. Compared with intuitionistic fuzzy sets (IFSs), PFSs proposed by Yager have advantages in handling vagueness in the real world and possess good symmetry. The entropy measure is the most widespread form of uncertainty measure. In this paper, we improve the technique for order preference by similarity to an ideal solution (TOPSIS) method to better deal with multiple-attribute group decision making (MAGDM) problems based on Pythagorean fuzzy soft sets (PFSSs). To better determine the weights of attributes, we firstly define a novel Pythagorean fuzzy soft entropy which is more reasonable and valid. Meanwhile the entropy has good symmetry. Entropy for PFSSs which is used to determine the subjective weights of attributes is also defined. Then we introduce a measure to calculate integrated weights by combining objective weights and subjective weights. Based on the integrated weights, the TOPSIS method is generalized and improved to solve the MAGDM problem. A distance measure taking into account the characteristics of Pythagorean fuzzy numbers (PFNs) is used to calculate distance between alternatives and ideal solutions. Finally, the proposed MAGDM method is applied in the case of selecting a missile position. Compared with other methods, it is shown that the proposed method can rank alternatives more reasonably and have higher distinguishability.


Transport ◽  
2020 ◽  
Vol 35 (6) ◽  
pp. 548-556 ◽  
Author(s):  
Cihan Uyanik ◽  
Gulfem Tuzkaya ◽  
Zeynep Tuğçe Kalender ◽  
Senay Oguztimur

Logistics Centers (LCs) are among the most important facilities for rapid, cost effective, environmental friendly and secure logistics services to the urban logistics problems. Finding proper locations to LCs has an important effect on their success. In this study, LCs’ location selection problem for Istanbul Metropolitan area is investigated. Istanbul is a leading city of Turkey in many categories including various industries, import/export amounts, transportation infrastructure and population density. However, industrialization and urbanization have introduced numerous problems to Istanbul. New projects are continuously being announced for the problems of metropolis, however, they may also bring new problems if they are not punctiliously planned and applied. Hence, in this study, it is aimed to propose a systematic Multi-Criteria Decision-Making (MCDM) approach for the LCs’ location selection problem of Istanbul. In this approach, an integrated DEcision-MAking Trial and Evaluation Laboratory (DEMATEL) and Intuitionistic Fuzzy (IF) Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) method is utilized. DEMATEL is used to analyse the decision criteria and IF-TOPSIS is used to evaluate candidate locations for LCs. Considering the vagueness inherent to this decision-making problem, IF sets are used for the evaluation process. Results are compared with the results of IF-VIKOR (VIše Kriterijumska Optimizacija kompromisno Rešenje – multi-criteria optimization and compromise solution) technique.


2020 ◽  
Vol 12 (10) ◽  
pp. 4044
Author(s):  
Marko Stokic ◽  
Davor Vujanovic ◽  
Dragan Sekulic

The efficient vehicle procurement is an important business segment of different companies with their own vehicle fleet. It has a significant influence on reducing transport and maintenance costs and on increasing the fleet’s energy efficiency. It is indispensable that managers consider various criteria from several aspects when procuring a vehicle. In that sense, we defined 13 relevant criteria and divided them into four multidisciplinary aspects: Construction-technical, financial, operational, and environmental. Decision-Making Trial and Evaluation Laboratory-Based Analytic Network Process (DANP) method was applied to evaluate the significance of defined criteria and aspects and their interdependency. It is established that the three most important criteria for vehicle procurement are vehicle price, vehicle maintenance, and vehicle selling price. The most important aspect is construction technical aspect, while the aspect of the environment is the least important. The Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) method was used to rank eight different vehicles, which were considered by vehicle fleet manager at the observed company. This model assists fleet managers in the selection of the most suitable vehicle for procurement, while significantly reducing decision-making time and simultaneously observing all necessary criteria and their weights. Moreover, we have considered 10 different scenarios to establish whether and how the rank of the observed alternatives would change.


2018 ◽  
Vol 32 (19) ◽  
pp. 1850216 ◽  
Author(s):  
Pingle Yang ◽  
Xin Liu ◽  
Guiqiong Xu

Identifying the influential nodes in complex networks is a challenging and significant research topic. Though various centrality measures of complex networks have been developed for addressing the problem, they all have some disadvantages and limitations. To make use of the advantages of different centrality measures, one can regard influential node identification as a multi-attribute decision-making problem. In this paper, a dynamic weighted Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) is developed. The key idea is to assign the appropriate weight to each attribute dynamically, based on the grey relational analysis method and the Susceptible–Infected–Recovered (SIR) model. The effectiveness of the proposed method is demonstrated by applications to three actual networks, which indicates that our method has better performance than single indicator methods and the original weighted TOPSIS method.


Mathematics ◽  
2020 ◽  
Vol 8 (10) ◽  
pp. 1739
Author(s):  
Zeeshan Ali ◽  
Tahir Mahmood ◽  
Miin-Shen Yang

The theory of complex spherical fuzzy sets (CSFSs) is a mixture of two theories, i.e., complex fuzzy sets (CFSs) and spherical fuzzy sets (SFSs), to cope with uncertain and unreliable information in realistic decision-making situations. CSFSs contain three grades in the form of polar coordinates, e.g., truth, abstinence, and falsity, belonging to a unit disc in a complex plane, with a condition that the sum of squares of the real part of the truth, abstinence, and falsity grades is not exceeded by a unit interval. In this paper, we first consider some properties and their operational laws of CSFSs. Additionally, based on CSFSs, the complex spherical fuzzy Bonferroni mean (CSFBM) and complex spherical fuzzy weighted Bonferroni mean (CSFWBM) operators are proposed. The special cases of the proposed operators are also discussed. A multi-attribute decision making (MADM) problem was chosen to be resolved based on the proposed CSFBM and CSFWBM operators. We then propose the Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS) method based on CSFSs (CSFS-TOPSIS). An application example is given to delineate the proposed methods and a close examination is undertaken. The advantages and comparative analysis of the proposed approaches are also presented.


2014 ◽  
Vol 6 (3) ◽  
pp. 114-123 ◽  
Author(s):  
Ali Yousefi ◽  
Mohd Sanusi S. Ahamad ◽  
Taksiah A. Majid

The process of bridges seismic retrofitting in the highway network is extremely costly and time consuming. In addition, the constraint on resources prevents the retrofitting of all the bridges at the same time. Besides, the bridges must be prioritized with simultaneous consideration of multiple criteria, including technical and socioeconomic aspect. This study intends to identify the major criteria and consider them simultaneously for prioritization of highway bridges additionally provides an effective technique for weighing these criteria. In this research, TOPSIS (Technique for Order Preference by Similarity to an Ideal Solution) method as a Multi-Criteria Decision-Making (MCDM) model is applied. TOPSIS method enables decision makers to deal with problems involving a large number of alternatives (bridges) and criteria. This methodology reduces multiple alternative (bridge) performances into a single value (ranking score) to facilitate the decision-making process for determination of the most suitable bridges for retrofitting. Suggested criteria include structural vulnerability, seismic hazard, anticipated service life, average daily traffic, interface with other lifelines, alternative routes and bridge importance. Moreover, relative importance (weight) of the criteria is assigned using Analytic Hierarchy Process (AHP) technique. The proposed method is applied to a real case of the Isfahan highway network.


Sign in / Sign up

Export Citation Format

Share Document