scholarly journals Water Shortage Risk Considering Encounter Situation of Water Supply in Multi-Resource Water City

Author(s):  
Ming Dou ◽  
Chen An ◽  
Jianling Zhang ◽  
Guiqiu Li

Abstract For multi-source water supply city, water supply varies due to different inflow conditions, which brings more uncertainty to water resources management. Therefore, it is necessary to scientifically evaluate and give countermeasures in advance. Based on the data sequence of Location, Yellow River and South-to-North Water Transfer in Zhengzhou from 1989 to 2018, the joint probability distribution model is constructed by using the optimized marginal distribution function and Copula function. The encounter probability is calculated, and the risk analysis is carried out according to the water shortage of each user under different encounters. The results show:①The probability of asynchronous is 85.96%, it is 71.92% higher than the probability of synchronous, which indicates that the three water sources complement each other well; ②Local water supply has the greatest impact on the risk of water shortage in Zhengzhou. Local water should be used reasonably and efficiently, and the external water source should be used as a supplement; ③The maximum encounter probability is 13.58%, all users except domestic water are in a water shortage state, the most serious water shortage in the industry is (-2.049, -1.089) billion m³. The minimum encounter probability is 1.14%, all users have different degrees of water shortage, the shortage of domestic water is (-3.037, 0.779) billion m³second only to industrial water shortage, the reservoir should be jointly dispatched and the groundwater exploitation should be increased to maintain the security of the urban water supply system and ensure the normal water use of social life.

2021 ◽  
Vol 3 ◽  
Author(s):  
Pennan Chinnasamy ◽  
Aman Srivastava

Traditional tanks in arid regions of India have been working to address water demands of the public for more than 2000 years. However, recent decade is witnessing growing domestic and agricultural water demand coupled with rising encroachment and ignorance toward tanks; consequently, intensifying water shortage issues. While climate change is impacting at alarming rates, local agencies have forgotten these tanks that have aided in sustainable water supply solutions for decades apart from municipal water supply. This research, for the first time, estimates water supply-demand for an arid region in South India (Madurai) and lists out the benefits if tanks were managed and desilted. Exploratory investigations for documenting seasonal domestic and agricultural unmet water demand were conducted followed by their validation through ground-truthing across the study period 2002–2019. Results indicated high unmet domestic water demand, estimating ~73% [maximum 365 thousand cubic meters (TCM)] for summer (March to May) and ~33% (maximum 149 TCM) for winter (January and February), and high unmet agricultural water demand estimating ~90% (maximum 5,424 TCM) during North-East monsoon (October to December), and ~95% (maximum 5,161 TCM) during South-West monsoon (June to September). Erratic rainfall pattern was identified as a major cause for higher fluctuations in water availability inside tanks ranging 0–50%, while lack of ownership resulted in increased siltation load ranging 30–70% of the tank's volume. The study found that the major portion of the unmet water demand can be accounted for through rehabilitation of the tanks, as under the rehabilitated tank irrigation scenario the tank storage could attain 200–400% more water than the estimated agricultural water demand. It was concluded that if the cascade tanks were managed appropriately, they could have positive impacts by reducing floods and providing water for drought seasons.


2011 ◽  
Vol 17 (1) ◽  
pp. 65-75 ◽  
Author(s):  
Xiao-jun Wang ◽  
Jian-yun Zhang ◽  
Shamsuddin Shahid ◽  
Amgad ElMahdi ◽  
Rui-min He ◽  
...  

2017 ◽  
Vol 20 (2) ◽  
pp. 393-409
Author(s):  
Xueping Gao ◽  
Yinzhu Liu ◽  
Bowen Sun

Abstract In recent years, the lower reaches of the Beiyun River have suffered from growing water resource shortages due to the reduction of upstream water resource and drying up of the stream channel. More reasonable and scientifically based water allocation plans should be developed and implemented; however, uncertainties exist regarding the determination of water supply availability and spillage of extra water. To assess and manage regional water shortage, the combined effects of multiple water supply sources as well as the joint probability of typical events should be considered. The joint probability of water supply, considering upstream and local water supplies, was estimated through the copula functions. A multi-objective optimization model was then developed and solved by improved genetic algorithms to plan water resources allocation within a multi-source environment containing multiple competitive users. The framework is demonstrated, and represents a range of different water supply scenarios in terms of different probabilities of occurrence and constraint violations. The results showed that water allocation was greatly influenced by uncertainties, especially in upstream-local water supply. In addition, violating water-allocation constraint posed an extra uncertainty. This study facilitates the proposition of adaption allocation plans for uncertain environments, aiming to balance the shortage, economy, and reliability.


Water ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 778 ◽  
Author(s):  
Baohui Men ◽  
Zhijian Wu ◽  
Huanlong Liu ◽  
Yangsong Li ◽  
Yong Zhao

When a city’s water demand cannot be fully satisfied, the hedging rule can reduce water loss by limiting water supply in advance. Based on water supply priority and benefit loss of water shortage for different users, this paper improved the objective function of hedging rules considering the benefit loss of water shortage. At the same time, according to the idea of restricting water supply by water users in turn, improved hedging rules (IHR) are applied to the urban water supply in Tianjin. The conclusions achieved from this study are as follows: (1) IHR increased water supply assurance rates for domestic water with high-priority and avoided destructive water shortages in agricultural water with low-priority. (2) IHR can better reduce the destructive loss caused by a large number of water shortages and the loss of production caused by a small numbers of water shortages than traditional hedging rules, which ensures high efficiency of water supply during the dry period. The results show that the IHR can improve the operational performance of the urban water supply.


2018 ◽  
Vol 245 ◽  
pp. 06012 ◽  
Author(s):  
Nidal Mahmoud ◽  
William Hogland ◽  
Michael Sokolov ◽  
Vasily Rud ◽  
Nikita Myazin

Rainwater harvesting in Palestine is a principal water resource that had been adopted since ancient times. However, the system had not been subjected to a thorough assessment. This paper aims at assessing the feasibility of rainwater harvesting for domestic water supply in Palestinian rural areas with special emphasis on socio-cultural and financial aspects as well as harvested water quality. Different methods were used to collect necessary data from a case study village, including literature review, observations, questionnaires and water quality measurement of freshly fallen and harvested rainwater samples. Moreover, domestic water demand and water supply from such a system were compared, and economic feasibility of applying this system was checked. The results revealed that harvested rainwater is a viable resource that can contribute considerably to minimizing water shortage.


2012 ◽  
Vol 7 (4) ◽  
Author(s):  
N. Rowan ◽  
E. Hecox ◽  
S. Morea

The last decade has brought many changes to Colorado's water supply outlook. Despite the recent economic recession, the state has experienced significant population growth, and Colorado's population is expected to nearly double within the next 40 years. Other pressures on Colorado's water supply include severe drought, a desire to meet multiple needs (i.e., municipal, environmental, recreational) with existing resources, and impacts to agriculture due to water shortages, urbanization, and transfers to new users. To address these challenges, the Colorado Water Conservation Board (CWCB) has undertaken a visioning process to explore solutions to these future water supply challenges. As part of this process, CWCB has led the state in identifying demand and supply strategies to meet the state's future water needs while considering agriculture and the environment. These strategies have been combined into varying portfolios that include methods such as conservation, local water projects, new Colorado River development, and agricultural transfers. This paper details the development and evaluation of these portfolios and describes stakeholder's efforts to balance meeting Colorado's water needs in the future.


2012 ◽  
Vol 212-213 ◽  
pp. 498-501
Author(s):  
Rui Guo ◽  
Sheng Le Cao

Scientific and reasonable water price is the foundation of beneficial operation of water supply project, and water pricing is on the basis of per cubic meter water supply cost. According to characteristics of water supply project in the plain irrigation area of the Yellow River, a research on calculation methods of agricultural water supply cost is made. Calculation formulas of project lines are put forward and an example was given.


Sign in / Sign up

Export Citation Format

Share Document