scholarly journals Revival of Traditional Cascade Tanks for Achieving Climate Resilience in Drylands of South India

2021 ◽  
Vol 3 ◽  
Author(s):  
Pennan Chinnasamy ◽  
Aman Srivastava

Traditional tanks in arid regions of India have been working to address water demands of the public for more than 2000 years. However, recent decade is witnessing growing domestic and agricultural water demand coupled with rising encroachment and ignorance toward tanks; consequently, intensifying water shortage issues. While climate change is impacting at alarming rates, local agencies have forgotten these tanks that have aided in sustainable water supply solutions for decades apart from municipal water supply. This research, for the first time, estimates water supply-demand for an arid region in South India (Madurai) and lists out the benefits if tanks were managed and desilted. Exploratory investigations for documenting seasonal domestic and agricultural unmet water demand were conducted followed by their validation through ground-truthing across the study period 2002–2019. Results indicated high unmet domestic water demand, estimating ~73% [maximum 365 thousand cubic meters (TCM)] for summer (March to May) and ~33% (maximum 149 TCM) for winter (January and February), and high unmet agricultural water demand estimating ~90% (maximum 5,424 TCM) during North-East monsoon (October to December), and ~95% (maximum 5,161 TCM) during South-West monsoon (June to September). Erratic rainfall pattern was identified as a major cause for higher fluctuations in water availability inside tanks ranging 0–50%, while lack of ownership resulted in increased siltation load ranging 30–70% of the tank's volume. The study found that the major portion of the unmet water demand can be accounted for through rehabilitation of the tanks, as under the rehabilitated tank irrigation scenario the tank storage could attain 200–400% more water than the estimated agricultural water demand. It was concluded that if the cascade tanks were managed appropriately, they could have positive impacts by reducing floods and providing water for drought seasons.

Agromet ◽  
2011 ◽  
Vol 25 (1) ◽  
pp. 9
Author(s):  
Siti Nurdhawata ◽  
Bambang Dwi Dasanto

<em>Generally, reservoir can overcome problem of water availability in particular region. The reservoir collects excess water during rainy season to be used at the time of water shortage during dry season. In Pidie, the largest water sources are from Krueng Baro Geunik and Krueng Tiro. The reservoir is located at Krueng Rukoh with Krueng Tiro as the source of water supply. The reservoir provides water for irrigating and supplying domestic water in Baro (11.950 ha) and Tiro (6.330 ha) areas. There are 13 districts (216718 inhabitants) use the water from this reservoir. Given the population growing at rate of 0.52% then the water demand in the region increases. The aim of study was to estimate the volume of water entering the reservoir using the tank model. Calibration curve between the tank model output and observation data showed good correlation (R<sup>2</sup> = 0.7). The calibrated model was then used to calculate the discharge at Krueng Baro Geunik. A water balance analysis showed that the highest deficit occurred in September and the highest surplus in November. Based on this analysis, the capacity of Krueng Rukoh reservoir is able to fulfill its function assuming the rate of population growth and the irrigation area are constant.</em>


2019 ◽  
Vol 248 ◽  
pp. 109256 ◽  
Author(s):  
Chul-Hee Lim ◽  
Cholho Song ◽  
Yuyoung Choi ◽  
Seong Woo Jeon ◽  
Woo-Kyun Lee

Author(s):  
V. Maruthi ◽  
P. Raghuram Reddy ◽  
K. S. Reddy ◽  
B.M. K. Reddy ◽  
Salini . ◽  
...  

A rainfed experiment was conducted at two contrasting rainfall situations of two different states of South India viz., Hyderabad (Telangana) and Tirupathi (Andhra Pradesh) during 2007-08 to standardize the optimum sowing time, plant densities and fertiliser dose for horsegram variety CRIDA 18R released and recommended for cultivation in South India. Results showed that the second fortnight of August and first fortnight of November were suitable optimum times of sowing in Hyderabad and Tirupathi regions respectively due to receipt of rainfall from South West monsoon and North East monsoon at respective locations. Plant densities of 3.33 lakh per hectare with or without 10N + 20P2O5 fertilizer dose yielded higher seed in both the regions. However when the sowing was delayed, wisest decision might be to continue the plant densities of 3.33 lakh population per hectare with or without fertilizer. The results revealed that CRIDA-18R responded to fertilizer up to 10 N +20 P2O5 kg ha-1 with 3.33 lakh plant density but for the varied optimum time of sowing at two different centers with occurrence of favourable rainfall situations, revealing a very flexible sowing time for CRHG-18R in South India.


2017 ◽  
Vol 12 (3) ◽  
pp. 564-575
Author(s):  
P. M. Natarajan ◽  
Shambhu Kalloikar

Chennai, the capital city of Tamil Nadu State, India is the fourth most populous metropolitan city in the nation, and the world's 36th largest metropolitan area. This city is facing acute water scarcity since it depends mainly on the North East monsoon (October-December) rain. As per the WHO norm of domestic water supply along with 20% of domestic use for industrial purpose, Chennai needs 807 million litre per day (MLD) for the present 4.98 million people and 1,455 MLD in 2050 for the 8.98 million projected population. There is about 2,018 MLD of water by different sources to the city. However, the dependable water resource from to this city is only 730 MLD and hence the present deficit is 77 MLD and 725 MLD in 2050. However, through ‘Urban resilient’ integrated water resources management pathways, it is possible to generate or save about 4,225 MLD of water to this city and bridge the water supply demand gap.


2020 ◽  
Vol 20 (6) ◽  
pp. 55-66
Author(s):  
Sehoon Kim ◽  
Chunggil Jung ◽  
Jiwan Lee ◽  
Jinuk Kim ◽  
Seongjoon Kim

This study is to evaluate future agricultural water supply capacity in Geum river basin (9,865 km<sup>2</sup>) using SWAT and MODSIM-DSS. The MODSIM-DSS was established by dividing the basin into 14 subbasins, and the irrigation facilities of agricultural reservoirs, pumping stations, diversions, culverts and groundwater wells were grouped within each subbasin, and networked between subbasins including municipal and industrial water supplies. The SWAT was calibrated and validated using 11 years (2005-2015) daily streamflow data of two dams (DCD and YDD) and 4 years (August 2012 to December 2015) data of three weirs (SJW, GJW, and BJW) considering water withdrawals and return flows from agricultural, municipal, and industrial water uses. The Nash−Sutcliffe efficiency (NSE) of two dam and three weirs inflows were 0.55∼0.70 and 0.57∼0.77 respectively. Through MODSIM-DSS run for 34 years from 1982 to 2015, the agricultural water shortage had occurred during the drought years of 1982, 1988, 1994, 2001 and 2015. The agricultural water shortage could be calculated as 197.8 × 10<sup>6</sup> m<sup>3</sup>, 181.9 × 10<sup>6</sup> m<sup>3</sup>, 211.5 × 10<sup>6</sup> m<sup>3</sup>, 189.2 × 10<sup>6</sup> m<sup>3</sup> and 182.0 × 10<sup>6</sup> m<sup>3</sup> respectively. The big shortages of agricultural water were shown in water resources unit map number of 3004 (Yeongdongcheon) and 3012 (Geumgang Gongju) areas exceeding 25.1 × 10<sup>6</sup> m<sup>3</sup> and 47.4 × 10<sup>6</sup> m<sup>3</sup>. From the estimation of future agricultural water requirement using RCP 8.5 INM-CM4 scenario, the 3004 and 3012 areas showed significant water shortages of 26.1 × 10<sup>6</sup> m<sup>3</sup> (104.1%) and 50.9 × 10<sup>6</sup> m<sup>3</sup> (107.4%) in 2080s (2070∼2099) compared to the present shortages. The water shortages decreased to 23.6 × 10<sup>6</sup> m<sup>3</sup> (94.0%) and 43.3 × 10<sup>6</sup> m<sup>3</sup> (91.4%) below of the present shortages by developing irrigation facilities.


Agronomy ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1657
Author(s):  
Chul-Hee Lim

Climate change has inherent multidisciplinary characteristics, and predicting the future of a single field of work has a limit. Therefore, this study proposes a water-centric nexus approach for the agriculture and forest sectors for improving the response to climate change in the Korean Peninsula. Two spatial models, i.e., Environmental Policy Integrated Climate and Integrated Valuation of Ecosystem Services and Tradeoffs, were used to assess the extent of changes in agricultural water demand, forest water supply, and their balance at the watershed level in the current and future climatic conditions. Climate changed has increased the agricultural water demand and forest water supply significantly in all future scenarios and periods. Comparing the results with RCP8.5 2070s and the baseline, the agricultural water demand and forest water supply increased by 35% and 28%, respectively. Water balance assessment at the main watershed level in the Korean Peninsula revealed that although most scenarios of the future water supply increases offset the demand growth, a risk to water balance exists in case of a low forest ratio or smaller watershed. For instance, the western plains, which are the granary regions of South and North Korea, indicate a higher risk than other areas. These results show that the land-use balance can be an essential factor in a water-centric adaptation to climate change. Ultimately, the water-centric nexus approach can make synergies by overcoming increasing water demands attributable to climate change.


2018 ◽  
Vol 59 ◽  
pp. 00022
Author(s):  
Mikołaj Sikorski ◽  
Hanna Bauman-Kaszubska

When calculating the balance of water supply, the purpose for which water is intended should be taken into account. Depending on them, the water quality parameters may vary. Rural and agricultural water demand covers the basic types of water demand, including the population's living and economic needs, animal husbandry, the needs of public utilities, the needs related to the operation of vehicles and machinery, workshops, machines and other purposes, including the own needs of the water pipes, fire-fighting etc. The level of demand is also closely related to the factors influencing the level of individual water consumption. Taking into account the deficiencies in formal and legal regulations, the binding regulations concerning the operation of water supply systems in special conditions have been presented so far. Elements of the benchmarking study on unit water demand indicators in normal and special conditions in rural areas have also been taken into account, guided by the principles and numerical indicators for the calculation of water demand for drinking and business purposes.


Water Policy ◽  
2014 ◽  
Vol 16 (4) ◽  
pp. 669-689 ◽  
Author(s):  
Thomas M. Missimer ◽  
Philip A. Danser ◽  
Gary Amy ◽  
Thomas Pankratz

Many large population centres are currently facing considerable difficulties with planning issues to secure future water supplies, as a result of water allocation and environmental issues, litigation, and political dogma. A classic case occurs in the metropolitan Atlanta area, which is a rapidly growing, large population centre that relies solely on surface water for supply. Lake Lanier currently supplies about 70% of the water demand and has been involved in a protracted legal dispute for more than two decades. Drought and environmental management of the reservoir combined to create a water shortage which nearly caused a disaster to the region in 2007 (only about 35 days of water supply was in reserve). While the region has made progress in controlling water demand by implementing a conservation plan, per capita use projections are still very high (at 511 L/day in 2035). Both non-potable reuse and indirect reuse of treated wastewater are contained in the most current water supply plan with up to 380,000 m3/day of wastewater treated using advanced wastewater treatment (nutrient removal) to be discharged into Lake Lanier. The water supply plan, however, includes no additional or new supply sources and has deleted any reference to the use of seawater desalination or other potential water sources which would provide diversification, thereby relying solely on the Coosa and Chattahoochee river reservoirs for the future.


Sign in / Sign up

Export Citation Format

Share Document