scholarly journals Enhanced biological phosphorus removal in low temperature sewage with iron-carbon SBR system

Author(s):  
wei li ◽  
Mingjie Gao ◽  
He Wang ◽  
Yunhe Hou ◽  
Yiming Chen ◽  
...  

Abstract This study proposed an AO-SBR combined with iron-carbon micro-electrolysis (ICME) particles system for sewage treatment at low temperature and explored the dephosphorization mechanism and microbial community structure. The experimental results illustrated that ICME particles contributed to phosphorus removal, metabolic mechanism and microbial community structure. The optimal treatment effect was achieved under the conditions of pH 7, DO 3.0 mg/L and particle dosage of 2.6 g Fe-C/g MLSS, and the removal rates of COD, TP, NH4+-N and TN reached 80.56%, 91.46%, 69.42% and 57.57%. The proportion of phosphorus accumulating organisms (PAOs) increased from 4.54% in SBR system to 10.89% in ICME-SBR system at 10°C. Additionally, metabolic rate of PAOs was promoted, and the activities of DHA and ETS both reached the maximum value of 13.34 ug·mg− 1VSS·h− 1 and 102.88 ug·mg− 1VSS·h− 1. These results suggest that the ICME particles could improve the performance of activated sludge under low-temperature conditions. This technology provides a new way for upgrading of the performance of sewage treatment in cold area

1991 ◽  
Vol 24 (7) ◽  
pp. 133-148 ◽  
Author(s):  
A. Peter ◽  
F. Sarfert

In investigations concerning sludge bulking in Berlin enhanced biological phosphorus removal was first observed unexpectedly. Because since 1986 an officially preset limit of 2 mg TP/l must be kept in all Berlin wastewater discharges it was decided to explore the capabilities of the observed mechanism under the specific circumstances of the exciting two large treatment plants in Ruhleben (240,000 m3/d) and Marienfelde (100,000 m3/d). For this purpose some of the existing units at both plants were equipped with anaerobic zones which were generated mainly by process modifications. Additionally stage one of the Ruhleben plant was altered completely in order to investigate the combination of biological phosphorus and nitrogen removal as a special pilot study in three parallel trains. The research activities and treatment results gained in each of the two stages of the Ruhleben and in the Marienfelde plant are reported in detail. For example BOD-related phosphorus removal rates were obtained ranging from 2.3-4.5 mg TP per 100 mg BOD removed. It must be stressed that all examinations were performed on full-scale conditions. At present the given limit of 2 mg TP/l in the Ruhleben plant is met without any chemical precipitation at least on average. From the beginning biological phosphorus removal will be integrated into further projected extensions.


2018 ◽  
Vol 53 ◽  
pp. 04023
Author(s):  
Mengfei Hu ◽  
Liping Qiu ◽  
Yan Wang

Phosphorus is one of the essential elements needed for the growth and reproduction of any organism. To improve the efficiency of biological phosphorus removal in sewage, it is very important to grasp the precise mechanism of biological phosphorus removal. Yeast is a single cell fungus and has a unique advantage in sewage treatment. Recent studies in the different types of yeast have revealed that there is a phosphate-responsive signal transduction (PHO) pathway to regulate phosphate-responsive genes for controlling phosphate absorption. In this review, the metabolic mechanisms and protein-protein interactions associated with the PHO pathway are highlighted firstly, and then several examples about improving the phosphorus removal efficiency of sewage by inducing gene mutation in yeast phosphorus metabolism was introduced. The aim is to provide new ideas for the realization of high-efficiency phosphorus recovery in nature.


Sign in / Sign up

Export Citation Format

Share Document