scholarly journals The medial thalamus plays an important role in the cognitive and emotional modulation of orofacial pain: a functional magnetic resonance imaging-based study

2020 ◽  
Author(s):  
Yu Jin ◽  
Hong Yang ◽  
Feifei Zhang ◽  
Jue Wang ◽  
He Liu ◽  
...  

Abstract Background The thalamus plays a critical role in the perception of orofacial pain. We investigated the neural mechanisms of orofacial pain by exploring the intrinsic functional alterations of the thalamus and assessing the changes in functional connectivity (FC) between the thalamic subregions with significant functional alterations and other brain regions in orofacial pain using the seed-based FC approach. Methods The study comprised 49 participants in the orofacial pain group and 49 healthy controls. Orofacial pain was caused by orthodontic separators. The resting-state functional magnetic resonance imaging data of the two groups were analyzed to obtain the fractional amplitude of low-frequency fluctuations (fALFFs) of the thalamus, and the thalamic subregions with significant fALFF abnormalities were used as seeds for FC analysis. Student’s t-tests were used to perform comparisons. Pearson’s correlation analysis was performed using SPM software. Results Forty-four participants with orofacial pain (mean age, 21.0±0.9 years; 24 women) and 49 age- and sex-matched healthy controls (mean age, 21.0±2.6 years; 27 women) were finally included. Compared with the control group, the orofacial pain group demonstrated (1) increased function in the dorsal thalamus and decreased function in the medial thalamus; (2) decreased FC between the medial thalamus and 12 brain regions (p<0.05, family-wise error corrected, voxel>100); and (3) potential positive and negative correlations between the medial thalamus-seeded FC and visual analog scale score changes (p<0.05, AlphaSim corrected). Conclusions The findings show that the medial and dorsal thalamus play important roles in orofacial pain perception and that the medial thalamus likely plays an important role in the cognitive and emotional modulation of orofacial pain.

2021 ◽  
Vol 11 ◽  
Author(s):  
Yu Jin ◽  
Hong Yang ◽  
Feifei Zhang ◽  
Jue Wang ◽  
He Liu ◽  
...  

The thalamus plays a critical role in the perception of orofacial pain. We investigated the neural mechanisms of orofacial pain by exploring the intrinsic functional alterations of the thalamus and assessing the changes in functional connectivity (FC) between the thalamic subregions with significant functional alterations and other brain regions in orofacial pain using the seed-based FC approach. There were 49 participants in the orofacial pain group and 49 controls. Orofacial pain was caused by orthodontic separators. The resting-state functional magnetic resonance imaging data of the two groups were analyzed to obtain the fractional amplitude of low-frequency fluctuations (fALFF) of the thalamus; the thalamic subregions with significant fALFF abnormalities were used as seeds for FC analysis. Student's t-tests were used for comparisons. Pearson's correlation analysis was performed using SPM software. Forty-four participants with orofacial pain (mean age, 21.0 ± 0.9 years; 24 women) and 49 age- and sex-matched controls (mean age, 21.0 ± 2.6 years; 27 women) were finally included. Compared with the control group, the orofacial pain group demonstrated the following: (1) increased function in the dorsal area of the thalamus and decreased function in the medial thalamus; (2) decreased FC between the medial thalamus and 12 brain regions (p &lt; 0.05, family-wise error corrected, voxel &gt; 100); and (3) potential positive and negative correlations between the medial thalamus-seeded FC and visual analog scale score changes (p &lt; 0.05, AlphaSim corrected). The findings show that the medial and dorsal thalami play important roles in orofacial pain perception, and that the medial thalamus likely plays an important role in the cognitive and emotional modulation of orofacial pain.


2020 ◽  
Vol 63 (9) ◽  
pp. 3051-3067
Author(s):  
Amy E. Ramage ◽  
Semra Aytur ◽  
Kirrie J. Ballard

Purpose Brain imaging has provided puzzle pieces in the understanding of language. In neurologically healthy populations, the structure of certain brain regions is associated with particular language functions (e.g., semantics, phonology). In studies on focal brain damage, certain brain regions or connections are considered sufficient or necessary for a given language function. However, few of these account for the effects of lesioned tissue on the “functional” dynamics of the brain for language processing. Here, functional connectivity (FC) among semantic–phonological regions of interest (ROIs) is assessed to fill a gap in our understanding about the neural substrates of impaired language and whether connectivity strength can predict language performance on a clinical tool in individuals with aphasia. Method Clinical assessment of language, using the Western Aphasia Battery–Revised, and resting-state functional magnetic resonance imaging data were obtained for 30 individuals with chronic aphasia secondary to left-hemisphere stroke and 18 age-matched healthy controls. FC between bilateral ROIs was contrasted by group and used to predict Western Aphasia Battery–Revised scores. Results Network coherence was observed in healthy controls and participants with stroke. The left–right premotor cortex connection was stronger in healthy controls, as reported by New et al. (2015) in the same data set. FC of (a) connections between temporal regions, in the left hemisphere and bilaterally, predicted lexical–semantic processing for auditory comprehension and (b) ipsilateral connections between temporal and frontal regions in both hemispheres predicted access to semantic–phonological representations and processing for verbal production. Conclusions Network connectivity of brain regions associated with semantic–phonological processing is predictive of language performance in poststroke aphasia. The most predictive connections involved right-hemisphere ROIs—particularly those for which structural adaptions are known to associate with recovered word retrieval performance. Predictions may be made, based on these findings, about which connections have potential as targets for neuroplastic functional changes with intervention in aphasia. Supplemental Material https://doi.org/10.23641/asha.12735785


2020 ◽  
Vol 2 (2) ◽  
Author(s):  
Laura Zapparoli ◽  
Silvia Seghezzi ◽  
Francantonio Devoto ◽  
Marika Mariano ◽  
Giuseppe Banfi ◽  
...  

Abstract Current neurocognitive models of motor control postulate that accurate action monitoring is crucial for a normal experience of agency—the ability to attribute the authorship of our actions and their consequences to ourselves. Recent studies demonstrated that action monitoring is impaired in Gilles de la Tourette syndrome, a movement disorder characterized by motor and vocal tics. It follows that Tourette syndrome patients may suffer from a perturbed sense of agency, the hypothesis tested in this study. To this end, we recruited 25 Tourette syndrome patients and 25 matched healthy controls in a case-control behavioural and functional magnetic resonance imaging study. As an implicit index of the sense of agency, we measured the intentional binding phenomenon, i.e., the perceived temporal compression between voluntary movements and their external consequences. We found evidence of an impaired sense of agency in Tourette syndrome patients who, as a group, did not show a significant intentional binding. The more reduced was the individual intentional binding, the more severe were the motor symptoms. Specific differences between the two groups were also observed in terms of brain activation patterns. In the healthy controls group, the magnitude of the intentional binding was associated with the activity of a premotor–parietal–cerebellar network. This relationship was not present in the Tourette syndrome group, suggesting an altered activation of the agency brain network for self-generated acts. We conclude that the less accurate action monitoring described in Tourette syndrome also involves the assessment of the consequences of actions in the outside world. We discuss that this may lead to difficulties in distinguishing external consequences produced by their own actions from the ones caused by others in Tourette syndrome patients.


Author(s):  
Andrea Duggento ◽  
Marta Bianciardi ◽  
Luca Passamonti ◽  
Lawrence L. Wald ◽  
Maria Guerrisi ◽  
...  

The causal, directed interactions between brain regions at rest (brain–brain networks) and between resting-state brain activity and autonomic nervous system (ANS) outflow (brain–heart links) have not been completely elucidated. We collected 7 T resting-state functional magnetic resonance imaging (fMRI) data with simultaneous respiration and heartbeat recordings in nine healthy volunteers to investigate (i) the causal interactions between cortical and subcortical brain regions at rest and (ii) the causal interactions between resting-state brain activity and the ANS as quantified through a probabilistic, point-process-based heartbeat model which generates dynamical estimates for sympathetic and parasympathetic activity as well as sympathovagal balance. Given the high amount of information shared between brain-derived signals, we compared the results of traditional bivariate Granger causality (GC) with a globally conditioned approach which evaluated the additional influence of each brain region on the causal target while factoring out effects concomitantly mediated by other brain regions. The bivariate approach resulted in a large number of possibly spurious causal brain–brain links, while, using the globally conditioned approach, we demonstrated the existence of significant selective causal links between cortical/subcortical brain regions and sympathetic and parasympathetic modulation as well as sympathovagal balance. In particular, we demonstrated a causal role of the amygdala, hypothalamus, brainstem and, among others, medial, middle and superior frontal gyri, superior temporal pole, paracentral lobule and cerebellar regions in modulating the so-called central autonomic network (CAN). In summary, we show that, provided proper conditioning is employed to eliminate spurious causalities, ultra-high-field functional imaging coupled with physiological signal acquisition and GC analysis is able to quantify directed brain–brain and brain–heart interactions reflecting central modulation of ANS outflow.


2021 ◽  
Author(s):  
Beatrice M. Jobst ◽  
Selen Atasoy ◽  
Adrián Ponce-Alvarez ◽  
Ana Sanjuán ◽  
Leor Roseman ◽  
...  

AbstractLysergic acid diethylamide (LSD) is a potent psychedelic drug, which has seen a revival in clinical and pharmacological research within recent years. Human neuroimaging studies have shown fundamental changes in brain-wide functional connectivity and an expansion of dynamical brain states, thus raising the question about a mechanistic explanation of the dynamics underlying these alterations. Here, we applied a novel perturbational approach based on a whole-brain computational model, which opens up the possibility to externally perturb different brain regions in silico and investigate differences in dynamical stability of different brain states, i.e. the dynamical response of a certain brain region to an external perturbation. After adjusting the whole-brain model parameters to reflect the dynamics of functional magnetic resonance imaging (fMRI) BOLD signals recorded under the influence of LSD or placebo, perturbations of different brain areas were simulated by either promoting or disrupting synchronization in the regarding brain region. After perturbation offset, we quantified the recovery characteristics of the brain area to its basal dynamical state with the Perturbational Integration Latency Index (PILI) and used this measure to distinguish between the two brain states. We found significant changes in dynamical complexity with consistently higher PILI values after LSD intake on a global level, which indicates a shift of the brain’s global working point further away from a stable equilibrium as compared to normal conditions. On a local level, we found that the largest differences were measured within the limbic network, the visual network and the default mode network. Additionally, we found a higher variability of PILI values across different brain regions after LSD intake, indicating higher response diversity under LSD after an external perturbation. Our results provide important new insights into the brain-wide dynamical changes underlying the psychedelic state - here provoked by LSD intake - and underline possible future clinical applications of psychedelic drugs in particular psychiatric disorders.HighlightsNovel offline perturbational method applied on functional magnetic resonance imaging (fMRI) data under the effect of lysergic acid diethylamide (LSD)Shift of brain’s global working point to more complex dynamics after LSD intakeConsistently longer recovery time after model perturbation under LSD influenceStrongest effects in resting state networks relevant for psychedelic experienceHigher response diversity across brain regions under LSD influence after an external in silico perturbation


2021 ◽  
Author(s):  
Yu Wang ◽  
Hongfei Jia ◽  
Yifan Duan ◽  
Hongbing Xiao

Abstract Alzheimer's disease (AD) is a progressive neurodegenerative disease, which changes the structure of brain regions by some hidden causes. In this paper for assisting doctors to make correct judgments, an improved 3DPCANet method is proposed to classify AD by combining the mean (mALFF) of the whole brain. The main idea includes that firstly, the functional magnetic resonance imaging (fMRI) data is pre-processed, and mALFF is calculated to get the corresponding matrix. Then the features of mALFF images are extracted via the improved 3DPCANet network. Finally, AD patients with different stages are classified using support vector machine (SVM). Experiments results based on public data from the Alzheimer’s disease neuroimaging initiative (ADNI) show that the proposed approach has better performance compared with state-of-the-art methods. The accuracies of AD vs. significant memory concern (SMC), SMC vs. late mild cognitive impairment (LMCI), and normal control (NC) vs. SMC reach respectively 92.42%, 91.80%, and 89.50%, which testifies the feasibility and effectiveness of the proposed method.


Nutrients ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 3010
Author(s):  
Andy Wai Kan Yeung ◽  
Natalie Sui Miu Wong

This systematic review aimed to reveal the differential brain processing of sugars and sweeteners in humans. Functional magnetic resonance imaging studies published up to 2019 were retrieved from two databases and were included into the review if they evaluated the effects of both sugars and sweeteners on the subjects’ brain responses, during tasting and right after ingestion. Twenty studies fulfilled the inclusion criteria. The number of participants per study ranged from 5 to 42, with a total number of study participants at 396. Seven studies recruited both males and females, 7 were all-female and 6 were all-male. There was no consistent pattern showing that sugar or sweeteners elicited larger brain responses. Commonly involved brain regions were insula/operculum, cingulate and striatum, brainstem, hypothalamus and the ventral tegmental area. Future studies, therefore, should recruit a larger sample size, adopt a standardized fasting duration (preferably 12 h overnight, which is the most common practice and brain responses are larger in the state of hunger), and reported results with familywise-error rate (FWE)-corrected statistics. Every study should report the differential brain activation between sugar and non-nutritive sweetener conditions regardless of the complexity of their experiment design. These measures would enable a meta-analysis, pooling data across studies in a meaningful manner.


Author(s):  
Lisa Yang ◽  
Lysia Demetriou ◽  
Matthew B Wall ◽  
Edouard G Mills ◽  
Victoria C Wing ◽  
...  

Abstract Context The hormone kisspeptin has crucial and well-characterized roles in reproduction. Emerging data from animal models also suggest that kisspeptin has important metabolic effects including modulation of food intake. However, to date there have been no studies exploring the effects of kisspeptin on brain responses to food stimuli in humans. Objective This work aims to investigate the effects of kisspeptin administration on brain responses to visual food stimuli and psychometric parameters of appetite, in healthy men. Design A double-blinded, randomized, placebo-controlled, crossover study was conducted. Participants Participants included 27 healthy, right-handed, eugonadal men (mean ± SEM: age 26.5 ± 1.1 years; body mass index 23.9 ± 0.4 kg/m2). Intervention Participants received an intravenous infusion of 1 nmol/kg/h of kisspeptin or rate-matched vehicle over 75 minutes. Main Outcome Measures Measurements included change in brain activity on functional magnetic resonance imaging in response to visual food stimuli and change in psychometric parameters of appetite, during kisspeptin administration compared to vehicle. Results Kisspeptin administration at a bioactive dose did not affect brain responses to visual food stimuli or psychometric parameters of appetite compared to vehicle. Conclusions This is the first study in humans investigating the effects of kisspeptin on brain regions regulating appetite and demonstrates that peripheral administration of kisspeptin does not alter brain responses to visual food stimuli or psychometric parameters of appetite in healthy men. These data provide key translational insights to further our understanding of the interaction between reproduction and metabolism.


2020 ◽  
Vol 15 (6) ◽  
pp. 661-670
Author(s):  
Stefan Schulreich ◽  
Holger Gerhardt ◽  
Dar Meshi ◽  
Hauke R Heekeren

Abstract Human decisions are often influenced by emotions. An economically relevant example is the role of fear in generating loss aversion. Previous research implicates the amygdala as a key brain structure in the experience of fear and loss aversion. The neural mechanism behind emotional influences on loss aversion is, however, unclear. To address this, we measured brain activation with functional magnetic resonance imaging (fMRI) while participants made decisions about monetary gambles after viewing fearful or neutral faces. We observed that loss aversion following the presentation of neutral faces was mainly predicted by greater deactivations for prospective losses (relative to activations for prospective gains) in several brain regions, including the amygdala. By contrast, increases in loss aversion following the presentation of fearful faces were mainly predicted by greater activations for prospective losses. These findings suggest a fear-induced shift from positive to negative value coding that reflects a context-dependent involvement of distinct valuation processes.


Sign in / Sign up

Export Citation Format

Share Document