scholarly journals Phomopsis Liquidambaris Contributes to the Decease of Ethylene Biosynthesis in Rice under Salt Stress via Inhibiting the Activity of 1-Aminocyclopropane-1-Carboxylate Deaminase

Author(s):  
M. A. Siddikee ◽  
M.I. Zereen ◽  
Mei Wu ◽  
Wei Zhang ◽  
Chuan Chao Dai

Abstract The endophytic fungus Phomopsis liquidambaris is characterized as a plant growth-promoting agent under salt stress, but its mechanism is unknown. Herein, 1-Aminocyclopropane-1-Carboxylate Deaminase (ACCD) from the strain was confirmed that it had the ability of utilizing 1-Aminocyclopropane-1-Carboxylate as the sole nitrogen source. The full-length ACCD gene was 1,152 bp, which encodes a mature protein of 384 amino acids with a molecular mass of 41.53 kDa. The ACCD activity was 3.9-fold in 3 mmol L− 1 ACC by qRT-PCR under salt stress comparing with no salt tress. Ethylene production was increased to 34.55–70.60% and reduced the growth of rice by 23–69.73% under salt stress. Inoculation of P. liquidambaris increased root-shoot length, fresh and dry weight, and overall growth of stressed rice seedlings. ACC accumulation, ACC synthase and ACC oxidase activities increased in salt-treated rice seedlings, while they were significantly reduced when P. liquidambaris was inoculated into Rice by qRT-PCR. It therefore can be concluded that P. liquidambaris can be used as a plant growth promoting fungus against salt stress and other biotic or abiotic stresses.

Author(s):  
Ibrahim El-Akhdar ◽  
Tamer Elsakhawy ◽  
Hanaa A. Abo-Koura

The plant growth-promoting rhizobacteria (PGPR) application could reduce the use of synthetic fertilizers and increase the sustainability of crop production. Halophilic bacteria that have PGPR characteristics can be used in different environmental stresses. Two different strains isolated, purified, characterized as a PGPRs and phylogenetic identification using 16sRNA which was revealed to be closest matched at 99% with Bacillus halotolerans and Lelliottia amnigena. The isolates possessed plant growth promoting properties as exopolysaccharides (EPS) and indole acetic acid (IAA) production, Bacillus halotolerans had the ability to fix elemental nitrogen and the two strains have the ability to P-solubilization. Furthermore, the strains were evaluated in alleviation of different levels of salt stress on wheat plant at two experiments (Pots and a Field). Strains under study conditions significantly increased the plant height, straw dry weight (DW g plant-1), spike number, 1000 grain DW recorded 31.550 g with Lelliottia amnigena MSR-M49 compared to un-inoculated and other strain in field,  grain yield recorded 2.77 (ton fed-1) with Lelliottia amnigena  as well as N% and protein content in grains recorded 1.213% and 6.916 respectively with  inoculation with Lelliottia amnigena,  also, spikes length, inoculated wheat show reduction in both proline accumulation in shoots and roots especially with Lelliottia amnigena recorded 2.79 (mg g-1DW), inoculation significantly increased K+ in root-shoot, K+/Na+ in root-shoot and reduced Na+ in root-shoot compared with control. This confirmed that this consortium could provide growers with a sustainable approach to reduce salt effect on wheat production.


2020 ◽  
Vol 52 (4) ◽  
Author(s):  
Muhammad Zafar-Ul-Hye ◽  
Fiza Mahmood ◽  
Subhan Danish ◽  
Shahid Hussain ◽  
Mehreen Gul ◽  
...  

2009 ◽  
Vol 33 (5) ◽  
pp. 1227-1235 ◽  
Author(s):  
Luciano Kayser Vargas ◽  
Bruno Brito Lisboa ◽  
Gilson Schlindwein ◽  
Camille Eichelberger Granada ◽  
Adriana Giongo ◽  
...  

In the last decades, the use of plant growth-promoting rhizobacteria has become an alternative to improve crop production. Rhizobium leguminosarum biovar trifolii is one of the most promising rhizobacteria and is even used with non-legume plants. This study investigated in vitro the occurrence of plant growth-promoting characteristics in several indigenous R. leguminosarum biovar trifolii isolated from soils in the State of Rio Grande do Sul, Brazil. Isolates were obtained at 11 locations and evaluated for indoleacetic acid and siderophore production and inorganic phosphate solubilization. Ten isolates were also molecularly characterized and tested for antagonism against a phytopathogenic fungus and for plant growth promotion of rice seedlings. Of a total of 252 isolates, 59 produced indoleacetic acid, 20 produced siderophores and 107 solubilized phosphate. Some degree of antagonism against Verticillium sp. was observed in all tested isolates, reducing mycelial growth in culture broth. Isolate AGR-3 stood out for increasing root length of rice seedlings, while isolate ELD-18, besides increasing root length in comparison to the uninoculated control, also increased the germination speed index, shoot length, and seedling dry weight. These results confirm the potential of some strains of R. leguminosarum biovar trifolii as plant growth-promoting rhizobacteria.


2020 ◽  
Vol 4 (1) ◽  
pp. 229-238
Author(s):  
Dayang Rahmanita Simanjuntak ◽  
Halimursyadah Halimursyadah ◽  
Syamsuddin Syamsuddin

Abstrak. Biological seed treatment merupakan salah satu perlakuan benih menggunakan mikroorganisme seperti rizobakteri pemacu pertumbuhan tanaman (RPPT). Penelitian ini bertujuan untuk mengetahui jenis rizobakteri dan kerapatan inokulum yang dapat meningkatkan viabilitas dan vigor benih cabai kadaluarsa. Penelitian ini menggunakan Rancangan Acak Lengkap (RAL) pola faktorial dengan 2 faktor dan 3 ulangan. Faktor pertama adalah jenis rizobakteri (R) terdiri atas lima taraf yaitu R1: Necercia sp; R2:Bacillus polymixa; R3: Actinobacillus suis; R4: Azotobacter sp; R5: Pseudomonas capacia. Faktor kedua adalah kerapatan inokulum rizobakteri terdiri dari tiga taraf yaitu K1: 107 cfu/ml; K2: 108 cfu/ml; K3: 109 cfu/ml. Hasil penelitian ini menunjukkan bahwa perlakuan benih menggunakan rizobakteri jenis Necercia sp dengan kerapatan inokulum 108 cfu/ml nyata meningkatkan vigor benih pada tolok ukur  indeks vigor yaitu 40% dan Pseudomonas capacia dengan kerapatan inokulum 109 cfu/ml juga merupakan kombinasi perlakuan terbaik dalam meningkatkan berat kering kecambah normal yaitu 69,33 mg.Treatment Of Plant Growth Promoting Rhizobacteria (PGPR)With Multiple Levels of Rhizobacteria Inoculum Density On Viability and Vigor Of Expired Red Chilli Seeds (Capsicum annuum L.Abstract. Biological seed treatment is one of the seed treatment using microorganisms such as plant growth-promoting rhizobacteria (PGPR). This study aims to determine the type of rhizobacteria and inoculum density that can increase the viability and vigor of expired chili seeds. This research uses Completely Randomized Design (CRD) factorial pattern with 2 factors and 3 replications. The first factor is the type of rhizobacteria (R) consists of five levels, namely R1: Necercia sp; R2: Bacillus polymixa; R3: Actinobacillus suis; R4: Azotobacter sp; R5: Pseudomonas capacia. The second factor is the density of rhizobacteria inoculum consisting of three levels namely K1: 107 cfu/ml; K2: 108 cfu/ml; K3: 109 cfu/ml. The results of this study showed that the seed treatment using the Necercia sp-type rizobacteria with 108 cfu/ml inoculum density significantly increased the seed vigor on the vigor index benchmark of 40% and Pseudomonas capacia with 109cfu/ml inoculum density was also the best treatment combination in increasing dry weight normal sprout is 69,33 mg. 


2021 ◽  
Vol 2 ◽  
pp. 234-239
Author(s):  
Nada Kholifah ◽  
Ardiana Kartika B ◽  
Teguh Pribadi

PGPR (Plant Growth Promoting Rhizobacteria) is a substance that helps plant growth with the help of rhizosphere microorganisms. PGPR propagation can be done with liquid media. This PGPR propagation needs to be done because this substance has many benefits for agricultural cultivation. The application of PGPR to the test plant, namely the pakcoy plant, proved that there was an effect of giving PGPR to the plant. Observations on the test plants were carried out by observing several observation variables such as plant height, root length, number of leaves, wet weight and dry weight. The results of these observations showed that the effect on the test plants was seen in the variables of root length, wet weight, and dry weight. Meanwhile, the variable plant height and number of leaves did not show a visible difference. 


Sign in / Sign up

Export Citation Format

Share Document