scholarly journals Characterization of florfenicol resistance genes in the coagulase-negative Staphylococcus  (CoNS) isolates and genomic features of  a  multidrug-resistant Staphylococcus lentus strain H29

2020 ◽  
Author(s):  
Chongyang Wu ◽  
Xueya Zhang ◽  
Jialei Liang ◽  
Qiaoling Li ◽  
Hailong Lin ◽  
...  

Abstract BackgroundWith the wide use of florfenicol to prevent and treat the bacterial infection of domestic animals, the emergence of the florfenicol resistance bacteria is increasingly serious. It is very important to elucidate the molecular mechanism of the bacteria’s resistance to florfenicol. MethodsThe minimum inhibitory concentration (MIC) levels was determined by the agar dilution method, and polymerase chain reaction (PCR) was conducted to analyze the distribution of florfenicol resistance genes in 39 CoNS strains isolated from poultry and livestock animals and seafood. The whole genome sequence of one multidrug-resistant strain, Staphylococcus lentus H29, was characterized, and comparative genomics analysis of the resistance gene-related sequences was also performed. ResultsAs a result, the isolates from the animals showed a higher resistance rate (23/28, 82.1%) and much higher MIC levels of florfenicol than those from seafood. Twenty-seven animal isolates carried 37 florfenicol resistance genes (including 26 fexA , 6 cfr and 5 fexB genes), of which 1 carried a cfr gene, 16 carried a fexA gene, 5 carried both fexA and fexB genes and 5 carried both fexA and cfr genes. On the other hand, all 11 isolates from seafood were sensitive to florfenicol, and only 3 carried a fexA gene each. The whole genome sequence of S. lentus H29 was composed of a chromosome and two plasmids ( pH29-46 , pH29- 26) and harbored 11 resistance genes, including 6 genes [ cfr, fexA, ant(6)-Ia , aac A -aph D , mecA and mph(C) ] encoded on the chromosome, four genes [ cfr, fexA, aac A -aph D and tcaA ] on pH29-46 and one gene ( fosD ) on pH29-26. It was interested to find that the S. lentus H29 genome carried two identical copies of the gene arrays of radC - tnpABC - hp - fexA (5,671 bp) and IS 256 - cfr (2,690 bp), of which one copy of the two gene arrays was encoded on plasmid pH29-46, while the other was encoded on the chromosome. ConclusionsThe current study revealed the wide distribution of florfenicol resistance genes ( cfr, fexA and fexB ) in animal bacteria, and to the best of our knowledge, this is the first report of one CoNS strain carrying two identical copies of florfenicol resistance-related gene arrays.

2020 ◽  
Author(s):  
Chongyang Wu ◽  
Xueya Zhang ◽  
Jialei Liang ◽  
Qiaoling Li ◽  
Hailong Lin ◽  
...  

Abstract Background: With the wide use of florfenicol to prevent and treat the bacterial infection of domestic animals, the emergence of the florfenicol resistance bacteria is increasingly serious. It is very important to elucidate the molecular mechanism of the bacteria’s resistance to florfenicol.Methods: The minimum inhibitory concentration (MIC) levels were determined by the agar dilution method, and polymerase chain reaction (PCR) was conducted to analyze the distribution of florfenicol resistance genes in 39 CoNS strains isolated from poultry and livestock animals and seafood. The whole genome sequence of one multidrug resistant strain, Staphylococcus lentus H29, was characterized, and comparative genomics analysis of the resistance gene-related sequences was also performed.Results: As a result, the isolates from the animals showed a higher resistance rate (23/28, 82.1%) and much higher MIC levels to florfenicol than those from seafood. Twenty-seven animal isolates carried 37 florfenicol resistance genes (including 26 fexA, 6 cfr and 5 fexB genes) with one carrying a cfr gene, 16 each harboring a fexA gene, 5 with both a fexA and a fexB genes and the other 5 with both a fexA and a cfr genes. On the other hand, all 11 isolates from seafood were sensitive to florfenicol, and only 3 carried a fexA gene each. The whole genome sequence of S. lentus H29 was composed of a chromosome and two plasmids (pH29-46, pH29-26) and harbored 11 resistance genes, including 6 genes [cfr, fexA, ant(6)-Ia, aacA-aphD, mecA and mph(C)] encoded on the chromosome, 4 genes [cfr, fexA, aacA-aphD and tcaA] on pH29-46 and 1 gene (fosD) on pH29-26. We found that the S. lentus H29 genome carried two identical copies of the gene arrays of radC-tnpABC-hp-fexA (5,671 bp) and IS256-cfr (2,690 bp), of which one copy of the two gene arrays was encoded on plasmid pH29-46, while the other was encoded on the chromosome.Conclusions: The current study revealed the wide distribution of florfenicol resistance genes (cfr, fexA and fexB) in animal bacteria, and to the best of our knowledge, this is the first report that one S. lentus strain carried two identical copies of florfenicol resistance-related gene arrays.


Author(s):  
Chongyang Wu ◽  
Xueya Zhang ◽  
Jialei Liang ◽  
Qiaoling Li ◽  
Hailong Lin ◽  
...  

Abstract Background With the wide use of florfenicol to prevent and treat the bacterial infection of domestic animals, the emergence of the florfenicol resistance bacteria is increasingly serious. It is very important to elucidate the molecular mechanism of the bacteria’s resistance to florfenicol. Methods The minimum inhibitory concentration (MIC) levels were determined by the agar dilution method, and polymerase chain reaction was conducted to analyze the distribution of florfenicol resistance genes in 39 CoNS strains isolated from poultry and livestock animals and seafood. The whole genome sequence of one multidrug resistant strain, Staphylococcus lentus H29, was characterized, and comparative genomics analysis of the resistance gene-related sequences was also performed. Results As a result, the isolates from the animals showed a higher resistance rate (23/28, 82.1%) and much higher MIC levels to florfenicol than those from seafood. Twenty-seven animal isolates carried 37 florfenicol resistance genes (including 26 fexA, 6 cfr and 5 fexB genes) with one carrying a cfr gene, 16 each harboring a fexA gene, 5 with both a fexA gene and a fexB gene and the other 5 with both a fexA gene and a cfr gene. On the other hand, all 11 isolates from seafood were sensitive to florfenicol, and only 3 carried a fexA gene each. The whole genome sequence of S. lentus H29 was composed of a chromosome and two plasmids (pH29-46, pH29-26) and harbored 11 resistance genes, including 6 genes [cfr, fexA, ant(6)-Ia, aacA-aphD, mecA and mph(C)] encoded on the chromosome, 4 genes [cfr, fexA, aacA-aphD and tcaA] on pH29-46 and 1 gene (fosD) on pH29-26. We found that the S. lentus H29 genome carried two identical copies of the gene arrays of radC-tnpABC-hp-fexA (5671 bp) and IS256-cfr (2690 bp), of which one copy of the two gene arrays was encoded on plasmid pH29-46, while the other was encoded on the chromosome. Conclusions The current study revealed the wide distribution of florfenicol resistance genes (cfr, fexA and fexB) in animal bacteria, and to the best of our knowledge, this is the first report that one S. lentus strain carried two identical copies of florfenicol resistance-related gene arrays.


2020 ◽  
Author(s):  
Chongyang Wu ◽  
Xueya Zhang ◽  
Jialei Liang ◽  
Qiaoling Li ◽  
Hailong Lin ◽  
...  

Abstract Background: With the wide use of florfenicol to prevent and treat the bacterial infection of domestic animals, the emergence of the florfenicol resistance bacteria is increasingly serious. It is very important to elucidate the molecular mechanism of the bacteria’s resistance to florfenicol. Methods: The minimum inhibitory concentration (MIC) levels was determined by the agar dilution method, and polymerase chain reaction (PCR) was conducted to analyze the distribution of florfenicol resistance genes in 39 CoNS strains isolated from poultry and livestock animals and seafood. The whole genome sequence of one multidrug-resistant strain, Staphylococcus lentus H29, was characterized, and comparative genomics analysis of the resistance gene-related sequences was also performed. Results: As a result, the isolates from the animals showed a higher resistance rate (23/28, 82.1%) and much higher MIC levels of florfenicol than those from seafood. Twenty-seven animal isolates carried 37 florfenicol resistance genes (including 26 fexA , 6 cfr and 5 fexB genes), of which 1 carried a cfr gene, 16 carried a fexA gene, 5 carried both fexA and fexB genes and 5 carried both fexA and cfr genes. On the other hand, all 11 isolates from seafood were sensitive to florfenicol, and only 3 carried a fexA gene each. The whole genome sequence of S. lentus H29 was composed of a chromosome and two plasmids ( pH29-46 , pH29- 26) and harbored 11 resistance genes, including 6 genes [ cfr, fexA, ant(6)-Ia , aac A -aph D , mecA and mph(C) ] encoded on the chromosome, four genes [ cfr, fexA, aac A -aph D and tcaA ] on pH29-46 and one gene ( fosD ) on pH29-26. It was interested to find that the S. lentus H29 genome carried two identical copies of the gene arrays of radC - tnpABC - hp - fexA (5,671 bp) and IS 256 - cfr (2,690 bp), of which one copy of the two gene arrays was encoded on plasmid pH29-46, while the other was encoded on the chromosome. Conclusions : The current study revealed the wide distribution of florfenicol resistance genes ( cfr, fexA and fexB ) in animal bacteria, and to the best of our knowledge, this is the first report of one CoNS strain carrying two identical copies of florfenicol resistance-related gene arrays.


2019 ◽  
Vol 2019 ◽  
pp. 1-10
Author(s):  
Yuanyuan Ying ◽  
Fei Wu ◽  
Chongyang Wu ◽  
Yi Jiang ◽  
Min Yin ◽  
...  

Due to inappropriate use, florfenicol resistance is becoming increasingly serious among animal respiratory tract and gut bacteria. To detect the florfenicol resistance mechanism among Enterobacteriaceae bacteria, 292 isolates from animal feces were examined. The agar dilution method was conducted to determine the minimum inhibitory concentration (MIC) for florfenicol, and polymerase chain reaction (PCR) was performed to detect florfenicol resistance genes. To further explore the molecular mechanism of florfenicol resistance, the whole-genome Leclercia adecarboxylata R25 was sequenced. Of the strains tested, 61.6% (180/292) were resistant to florfenicol, 64.4% (188/292) were positive for floR, and 1.0% (3/292) for cfr. The whole-genome sequence analysis of L. adecarboxylata R25 revealed that the floR gene is carried by a transposon and located on a plasmid (pLA-64). Seven other resistance genes are also encoded on pLA-64, all of which were found to be related to mobile genetic elements. The sequences sharing the greatest similarities to pLA-64 are the plasmids p02085-tetA of Citrobacter freundii and p234 and p388, both from Enterobacter cloacae. The resistance gene-related mobile genetic elements also share homologous sequences from different species or genera of bacteria. These findings indicate that floR mainly contributes to the high rate of florfenicol resistance among Enterobacteriaceae. The resistance gene-related mobile genetic elements encoded by pLA-64 may be transferred among bacteria of different species or genera, resulting in resistance dissemination.


2016 ◽  
Vol 3 (suppl_1) ◽  
Author(s):  
Kizee Etienne ◽  
Snigdha Vallabhaneni ◽  
Joveria Farooqi ◽  
Rana Jawad Asghar ◽  
Anuradha Chowdhary ◽  
...  

2015 ◽  
Vol 9 (01) ◽  
pp. 029-034 ◽  
Author(s):  
Thiago César Nascimento ◽  
Vânia Lúcia Da Silva ◽  
Alessandra Barbosa Ferreira-Machado ◽  
Cláudio Galuppo Diniz

Introduction: Healthcare waste (HCW) might potentially harbor infective viable microorganisms in sanitary landfills. We investigated the antimicrobial susceptibility patterns and the occurrence of the mecA gene in coagulase-negative Staphylococcus strains (CoNS) recovered from the leachate of the HCW in an untreated sanitary landfill. Methodology: Bacterial identification was performed by physiological and molecular approaches, and minimum inhibitory concentrations (MICs) of antimicrobial drugs were determined by the agar dilution method according to CLSI guidelines. All oxacillin-resistant bacteria were screened for the mecA gene. Results: Out of 73 CoNS, seven different species were identified by 16S rDNA sequencing: Staphylococcus felis (64.4%; n = 47), Staphylococcus sciuri (26.0%; n = 19), Staphylococcus epidermidis (2.7%; n = 2), Staphylococcus warneri (2.7%; n = 2), Staphylococcus lentus (1.4%; n = 1), Staphylococcus saprophyticus (1.4%; n = 1), and Staphylococcus haemolyticus (1.4%; n = 1). Penicillin was the least effective antimicrobial (60.3% of resistance; n = 44) followed by erythromycin (39.8%; n = 29), azithromycin (28.8%; n = 21), and oxacillin (16.5%; n = 12). The most effective drug was vancomycin, for which no resistance was observed, followed by gentamicin and levofloxacin, for which only intermediate resistance was observed (22%, n = 16 and 1.4%, n = 1, respectively). Among the oxacillin-resistant strains, the mecA gene was detected in two isolates. Conclusions: Considering the high antimicrobial resistance observed, our results raise concerns about the survival of putative bacterial pathogens carrying important resistance markers in HCW and their environmental spread through untreated residues discharged in sanitary landfills.


Sign in / Sign up

Export Citation Format

Share Document