scholarly journals Imidacloprid Induces Oxidative Stress and Genotoxicity in Nile Tilapia: The Role of Ascorbic Acid Combined Exposure

Author(s):  
Islam M. El-Garawani ◽  
Elsayed A. Khallaf ◽  
Alaa A. Alne-na-ei ◽  
Rehab G. Elgendy ◽  
Gaber A.M. Mersal ◽  
...  

Abstract Imidacloprid (Imid), a systemic neonicotinoid insecticide, is broadly used worldwide. It is reported to contaminate aquatic systems. This study was proposed to evaluate oxidative stress and genotoxicity of Imid on Nile tilapia (Oreochromis niloticus) and the protective effect of ascorbic acid (Asc). O. niloticus juveniles (30.4 ± 9.3 g, 11.9 ± 1.3 cm) were divided into six groups (n=10/replicate). For 21 days, two groups were exposed to sub-lethal concentrations of Imid (8.75 ppm, 1/20 of 72h-LC50 & 17.5 ppm, 1/10 of 72h-LC50); other two groups were exposed to Asc (50 ppm) in combination with Imid (8.75 & 17.5 ppm); one group was exposed to Asc (50 ppm) in addition to a group of unexposed fish which served as controls. Oxidative stress was assessed in the liver where the level of enzymatic activities including superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX) in addition to mRNA transcripts and, Lipid peroxidation (LPO) were evaluated. Moreover, mitotic index (MI) and comet assay were performed, in addition to the erythrocytic micronucleus (MN), and nuclear abnormalities (NA) were observed to assess genotoxicity in fish. Imid exposure induced significant (p˂ 0.05) changes in the antioxidant profile of the juveniles' liver by increasing the activities and gene expression of SOD, CAT and GPX as well as elevating the levels of LPO. DNA strand breaks in gill cells, erythrocytes and hepatocytes along with erythrocytic MN and NA were also significantly elevated in Imid-exposed groups. MI showed a significant (p˂ 0.05) decrease associated with Imid exposure. Asc administration induced a significant amelioration towards the Imid toxicity (8.75 & 17.5 ppm). A significant protective potency against the genotoxic effects of Imid was evidenced in Asc co-treated groups. Collectively, results highlight the importance of Asc as a protective agent against Imid-induced oxidative stress and genotoxicity in O. niloticus juveniles.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Islam M. El-Garawani ◽  
Elsayed A. Khallaf ◽  
Alaa A. Alne-na-ei ◽  
Rehab G. Elgendy ◽  
Gaber A. M. Mersal ◽  
...  

AbstractImidacloprid (Imid), a systemic neonicotinoid insecticide, is broadly used worldwide. It is reported to contaminate aquatic systems. This study was proposed to evaluate oxidative stress and genotoxicity of Imid on Nile tilapia (Oreochromis niloticus) and the protective effect of ascorbic acid (Asc). O. niloticus juveniles (30.4 ± 9.3 g, 11.9 ± 1.3 cm) were divided into six groups (n = 10/replicate). For 21 days, two groups were exposed to sub-lethal concentrations of Imid (8.75 ppm, 1/20 of 72 h-LC50 and 17.5 ppm, 1/10 of 72 h-LC50); other two groups were exposed to Asc (50 ppm) in combination with Imid (8.75 and 17.5 ppm); one group was exposed to Asc (50 ppm) in addition to a group of unexposed fish which served as controls. Oxidative stress was assessed in the liver where the level of enzymatic activities including superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX) in addition to mRNA transcripts and, Lipid peroxidation (LPO) were evaluated. Moreover, mitotic index (MI) and comet assay were performed, in addition, the erythrocytic micronucleus (MN), and nuclear abnormalities (NA) were observed to assess genotoxicity in fish. Imid exposure induced significant (p ˂ 0.05) changes in the antioxidant profile of the juveniles' liver by increasing the activities and gene expression of SOD, CAT and GPX as well as elevating the levels of LPO. DNA strand breaks in gill cells, erythrocytes and hepatocytes along with erythrocytic MN and NA were also significantly elevated in Imid-exposed groups. MI showed a significant (p ˂ 0.05) decrease associated with Imid exposure. Asc administration induced a significant amelioration towards the Imid toxicity (8.75 and 17.5 ppm). A significant protective potency against the genotoxic effects of Imid was evidenced in Asc co-treated groups. Collectively, results highlight the importance of Asc as a protective agent against Imid-induced oxidative stress and genotoxicity in O. niloticus juveniles.


1996 ◽  
Vol 271 (1) ◽  
pp. F209-F215 ◽  
Author(s):  
H. Hagar ◽  
N. Ueda ◽  
S. V. Shah

Hypoxia is considered to result in a necrotic form of cell injury. We have recently demonstrated a role of endonuclease activation, generally considered a feature of apoptosis, to be almost entirely responsible for DNA damage in hypoxic injury to renal tubular epithelial cells. The role of reactive oxygen metabolites in endonuclease-induced DNA damage and cell death in chemical hypoxic injury has not been previously examined. LLC-PK1 cells exposed to chemical hypoxia with antimycin A resulted in enhanced generation of intracellular reactive oxygen species as measured by oxidation of a sensitive fluorescent probe, 2',7'-dichlorofluorescin diacetate. Superoxide dismutase, a scavenger of superoxide radical, significantly reduced the fluorescence induced by antimycin A and provided significant protection against chemical hypoxia-induced DNA strand breaks (as measured by the alkaline unwinding assay). Pyruvate, a scavenger of hydrogen peroxide, provided significant protection against chemical hypoxia-induced DNA strand breaks and DNA fragmentation (as measured by agarose gel electrophoresis). The interaction between superoxide anion and hydrogen peroxide in the presence of a metal catalyst leads to generation of other oxidant species such as hydroxyl radical. Hydroxyl radical scavengers, dimethylthiourea, salicylate, and sodium benzoate, and two metal chelators, deferoxamine and 1,10-phenanthroline, also provided marked protection against DNA strand breaks and DNA fragmentation. These scavengers of reactive oxygen metabolites and metal chelators provided significant protection against cell death as measured by trypan blue exclusion and lactate dehydrogenase release. Taken together, these data indicate that reactive oxygen species play an important role in the endonuclease activation and consequent DNA damage, as well as cell death in chemical hypoxic injury to renal tubular epithelial cells.


Mutagenesis ◽  
2019 ◽  
Vol 34 (4) ◽  
pp. 341-354 ◽  
Author(s):  
Leticia K Lerner ◽  
Natália C Moreno ◽  
Clarissa R R Rocha ◽  
Veridiana Munford ◽  
Valquíria Santos ◽  
...  

Abstract Nucleotide excision repair (NER) is a conserved, flexible mechanism responsible for the removal of bulky, helix-distorting DNA lesions, like ultraviolet damage or cisplatin adducts, but its role in the repair of lesions generated by oxidative stress is still not clear. The helicase XPD/ERCC2, one of the two helicases of the transcription complex IIH, together with XPB, participates both in NER and in RNA pol II-driven transcription. In this work, we investigated the responses of distinct XPD-mutated cell lines to the oxidative stress generated by photoactivated methylene blue (MB) and KBrO3 treatments. The studied cells are derived from patients with XPD mutations but expressing different clinical phenotypes, including xeroderma pigmentosum (XP), XP and Cockayne syndrome (XP-D/CS) and trichothiodystrophy (TTD). We show by different approaches that all XPD-mutated cell lines tested were sensitive to oxidative stress, with those from TTD patients being the most sensitive. Host cell reactivation (HCR) assays showed that XP-D/CS and TTD cells have severely impaired repair capacity of oxidised lesions in plasmid DNA, and alkaline comet assays demonstrated the induction of significantly higher amounts of DNA strand breaks after treatment with photoactivated MB in these cells compared to wild-type cells. All XPD-mutated cells presented strong S/G2 arrest and persistent γ-H2AX staining after photoactivated MB treatment. Taken together, these results indicate that XPD participates in the repair of lesions induced by the redox process, and that XPD mutations lead to differences in the response to oxidatively induced damage.


NAR Cancer ◽  
2020 ◽  
Vol 2 (2) ◽  
Author(s):  
Polina S Loshchenova ◽  
Svetlana V Sergeeva ◽  
Sally C Fletcher ◽  
Grigory L Dianov

Abstract Maintenance of genome stability suppresses cancer and other human diseases and is critical for organism survival. Inevitably, during a life span, multiple DNA lesions can arise due to the inherent instability of DNA molecules or due to endogenous or exogenous DNA damaging factors. To avoid malignant transformation of cells with damaged DNA, multiple mechanisms have evolved to repair DNA or to detect and eradicate cells accumulating unrepaired DNA damage. In this review, we discuss recent findings on the role of Sp1 (specificity factor 1) in the detection and elimination of cells accumulating persistent DNA strand breaks. We also discuss how this mechanism may contribute to the maintenance of physiological populations of healthy cells in an organism, thus preventing cancer formation, and the possible application of these findings in cancer therapy.


Sign in / Sign up

Export Citation Format

Share Document