scholarly journals Age-dependent electroencephalogram characteristics during different levels of anesthetic depth

Author(s):  
Feixiang Li ◽  
Yunchun Lu ◽  
Yaoyao Dang ◽  
Huiming Chen ◽  
Huanhuan Lv ◽  
...  

Abstract Objective The monitoring of anesthetic depth based on electroencephalogram (EEG) derivation is not currently adjusted for age. Here we analyze the influence of age factors on EEG characteristics. Methods Frontal EEG recordings were obtained from 80 adults during routine clinical anesthesia. The characteristics of EEG with age and anesthesia were observed during four kinds of anesthesia. Results Relative slow wave power, relative delta power, absolute slow wave power, BIS value and approximate entropy were statistically different in the adjacent anesthesia states (P < 0.05). Under very deep anesthesia, the relative slow wave power increases linearly with age (R2 = 0.1802; P = 0.0001), the relative delta power decreased linearly with age (R2 = 0.3587; P < 0.0001), the BIS value increased linearly with age (R2 = 0.0986; P = 0.005), and the approximate entropy increases linearly with age (R2 = 0.0565; P = 0.036). The relative slow wave power did not change in an age-dependent manner. Conclusions When using relative delta power, absolute slow wave power, BIS value and approximate entropy to monitor the depth of anesthesia, the influence of age should be considered, However, when using relative slow wave power, age should not be considered.

2019 ◽  
Vol 299 (5) ◽  
pp. 1253-1260 ◽  
Author(s):  
Qi Wu ◽  
Lixia Zhang ◽  
Licong Huang ◽  
Yu Lei ◽  
Lin Chen ◽  
...  

2010 ◽  
Vol 38 (4) ◽  
pp. 1001-1005 ◽  
Author(s):  
Kunie Ando ◽  
Karelle Leroy ◽  
Céline Heraud ◽  
Anna Kabova ◽  
Zehra Yilmaz ◽  
...  

We have reported previously a tau transgenic mouse model (Tg30tau) overexpressing human 4R1N double-mutant tau (P301S and G272V) and that develops AD (Alzheimer's disease)-like NFTs (neurofibrillary tangles) in an age-dependent manner. Since murine tau might interfere with the toxic effects of human mutant tau, we set out to analyse the phenotype of our Tg30tau model in the absence of endogenous murine tau with the aim to reproduce more faithfully a model of human tauopathy. By crossing the Tg30tau line with TauKO (tau-knockout) mice, we have obtained a new mouse line called Tg30×TauKO that expresses only exogenous human double-mutant 4R1N tau. Whereas Tg30×TauKO mice express fewer tau proteins compared with Tg30tau, they exhibit augmented sarkosyl-insoluble tau in the brain and an increased number of Gallyas-positive NFTs in the hippocampus. Taken together, exclusion of murine tau causes accelerated tau aggregation during aging of this mutant tau transgenic model.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
James Moore ◽  
Rashid Akbergenov ◽  
Martina Nigri ◽  
Patricia Isnard-Petit ◽  
Amandine Grimm ◽  
...  

AbstractRandom errors in protein synthesis are prevalent and ubiquitous, yet their effect on organismal health has remained enigmatic for over five decades. Here, we studied whether mice carrying the ribosomal ambiguity (ram) mutation Rps2-A226Y, recently shown to increase the inborn error rate of mammalian translation, if at all viable, present any specific, possibly aging-related, phenotype. We introduced Rps2-A226Y using a Cre/loxP strategy. Resulting transgenic mice were mosaic and showed a muscle-related phenotype with reduced grip strength. Analysis of gene expression in skeletal muscle using RNA-Seq revealed transcriptomic changes occurring in an age-dependent manner, involving an interplay of PGC1α, FOXO3, mTOR, and glucocorticoids as key signaling pathways, and finally resulting in activation of a muscle atrophy program. Our results highlight the relevance of translation accuracy, and show how disturbances thereof may contribute to age-related pathologies.


2016 ◽  
Vol 128 ◽  
pp. 27-34 ◽  
Author(s):  
Karlene T. Barrett ◽  
Richard J.A. Wilson ◽  
Morris H. Scantlebury

2018 ◽  
Vol 45 (12) ◽  
pp. 651-662 ◽  
Author(s):  
Emmanuel Enoch Dzakah ◽  
Ahmed Waqas ◽  
Shuai Wei ◽  
Bin Yu ◽  
Xiaolin Wang ◽  
...  

1997 ◽  
Vol 272 (2) ◽  
pp. R648-R655 ◽  
Author(s):  
M. R. Opp ◽  
L. A. Toth ◽  
E. A. Tolley

Slow-wave activity in the electroencephalogram is thought to reflect the depth or intensity of sleep. This hypothesis is primarily derived from studies of rats or humans. However, some characteristics of sleep of rabbits differ from those of rats or humans. To determine whether slow-wave activity (power density in the delta frequency band of 0.5-5.0 Hz) correlates with arousability in rabbits, we presented auditory stimuli (72-90 dB) to control or sleep-deprived animals during slow-wave sleep. The resulting behavioral responses, defined by changes in eye state and body posture, and the latency to return to sleep were used as measures of arousability. Behavioral responsiveness to auditory stimuli increased with increasing stimulus intensity in both control and sleep-deprived animals. Overall, however, sleep-deprived animals exhibited fewer postural changes and eye openings than did control rabbits. Sleep-deprived rabbits also more rapidly returned to sleep after the stimulus presentation than did control animals. Latency to return to sleep was correlated with delta power before stimulus presentation, but behavioral responsiveness was not. These data suggest that, in this rabbit model, delta power may not be predictive of behavioral arousability but may reflect sleep propensity.


Sign in / Sign up

Export Citation Format

Share Document