scholarly journals Immune infiltration of MMP14 in Pan-cancer and its prognostic effect on tumor

Author(s):  
Minde Li ◽  
Shaoyang Li ◽  
Lin Zhou ◽  
Le Yang ◽  
Xiao Wu ◽  
...  

Abstract Background: Matrix metallopeptidase 14(MMPL4) is a member of the matrix metalloproteinase family, which interacts with tissue metalloproteinase inhibitors (TIMPs), and is involved in normal physiological functions such as cell migration, invasion, metastasis, angiogenesis and proliferation, as well as tumor genesis and progression. However, there has been a lack of relevant reports on the effect of MMP14 on pan-cancer. This study aims to explore the correlation between MMP14 and pan-cancer prognosis, immune infiltration, and the effects of pan-cancer gene mismatch repair (MMR), microsatellite instability (MSI), tumor mutation load (TMB), DNA methylation, and immune checkpoint genes.Methods: In this study, we used bioinformatics to analyze data from multiple databases, including TCGA, Oncomine and Kaplan-Meier Plotter. We investigated the relationship between the expression of MMP14 in tumors and tumor prognosis, the relationship between MMP14 expression and tumor cell immune infiltration, and the relationship between MMR gene mismatch repair (MMR), microsatellite instability (MSI), tumor mutation load (TMB), DNA methylation, and immune checkpoint genes.Results: MMP14 expression is highly associated with prognosis of a variety of cancers, tumor immunoinvasion, and has important effects on pan-oncologic mismatch repair (MMR), microsatellite instability (MSI), tumor mutation load (TMB), DNA methylation, and immune checkpoint genes. Conclusion: MMP14 is highly correlated with tumor prognosis and immunoinvasion, and affects the occurrence and progression of many tumors. All these fully indicate that MMP14 may be a biomarker for the prognosis, diagnosis and treatment of many tumors, and provide a new idea and direction for subsequent tumor immune research and treatment strategies.

2021 ◽  
Vol 11 ◽  
Author(s):  
Minde Li ◽  
Shaoyang Li ◽  
Lin Zhou ◽  
Le Yang ◽  
Xiao Wu ◽  
...  

BackgroundMatrix metalloproteinase 14 (MMP14) is a member of the MMP family, which interacts with tissue inhibitors of metalloproteinase (TIMPs), and is involved in normal physiological functions such as cell migration, invasion, metastasis, angiogenesis, and proliferation, as well as tumor genesis and progression. However, there has been a lack of relevant reports on the effect of MMP14 across cancers. This study aims to explore the correlation between MMP14 and pan-cancer prognosis, immune infiltration, and the effects of pan-cancer gene mismatch repair (MMR), microsatellite instability (MSI), tumor mutational burden (TMB), DNA methylation, and immune checkpoint genes.MethodsIn this study, we used bioinformatics to analyze data from multiple databases, including The Cancer Genome Atlas (TCGA), ONCOMINE, and Kaplan–Meier plotter. We investigated the relationship between the expression of MMP14 in tumors and tumor prognosis, the relationship between MMP14 expression and tumor cell immune infiltration, and the relationship between MMR gene MMR, MSI, TMB, DNA methylation, and immune checkpoint genes.ResultsMMP14 expression is highly associated with the prognosis of a variety of cancers and tumor immune invasion and has important effects on pan oncologic MMR, MSI, TMB, DNA methylation, and immune checkpoint genes.ConclusionMMP14 is highly correlated with tumor prognosis and immune invasion and affects the occurrence and progression of many tumors. All of these results fully indicate that MMP14 may be a biomarker for the prognosis, diagnosis, and treatment of many tumors and provide new ideas and direction for subsequent tumor immune research and treatment strategies.


2022 ◽  
Vol 8 ◽  
Author(s):  
Fei Chen ◽  
Yumei Fan ◽  
Xiaopeng Liu ◽  
Jianhua Zhang ◽  
Yanan Shang ◽  
...  

Heat shock factor 2 (HSF2), a transcription factor, plays significant roles in corticogenesis and spermatogenesis by regulating various target genes and signaling pathways. However, its expression, clinical significance and correlation with tumor-infiltrating immune cells across cancers have rarely been explored. In the present study, we comprehensively investigated the expression dysregulation and prognostic significance of HSF2, and the relationship with clinicopathological parameters and immune infiltration across cancers. The mRNA expression status of HSF2 was analyzed by TCGA, GTEx, and CCLE. Kaplan-Meier analysis and Cox regression were applied to explore the prognostic significance of HSF2 in different cancers. The relationship between HSF2 expression and DNA methylation, immune infiltration of different immune cells, immune checkpoints, tumor mutation burden (TMB), and microsatellite instability (MSI) were analyzed using data directly from the TCGA database. HSF2 expression was dysregulated in the human pan-cancer dataset. High expression of HSF2 was associated with poor overall survival (OS) in BRCA, KIRP, LIHC, and MESO but correlated with favorable OS in LAML, KIRC, and PAAD. The results of Cox regression and nomogram analyses revealed that HSF2 was an independent factor for KIRP, ACC, and LIHC prognosis. GO, KEGG, and GSEA results indicated that HSF2 was involved in various oncogenesis- and immunity-related signaling pathways. HSF2 expression was associated with TMB in 9 cancer types and associated with MSI in 5 cancer types, while there was a correlation between HSF2 expression and DNA methylation in 27 types of cancer. Additionally, HSF2 expression was correlated with immune cell infiltration, immune checkpoint genes, and the tumor immune microenvironment in various cancers, indicating that HSF2 could be a potential therapeutic target for immunotherapy. Our findings revealed the important roles of HSF2 across different cancer types.


2021 ◽  
Vol 8 ◽  
Author(s):  
Xiaoxue Li ◽  
Shiyu Zeng ◽  
Yiling Ding ◽  
Yanting Nie ◽  
Mengyuan Yang

Transporter associated with antigen processing 1 (TAP1) is a protein related immune regulation and plays a role in several malignant tumors. However, the effect of TAP1 on immune infiltration, immunotherapy, and metastasis in different cancers has not been reported till date. The cancer genome atlas database, the tumor immune estimation resource database, and the estimation of stromal and immune cells in malignant tumors using expression (ESTIMATE) algorithm were used to determine the correlation between TAP1 expression and the prognosis of a variety of cancers, immune infiltration, immune checkpoint genes, DNA methylation, and neoantigens. Various enrichment analyses were used to study the correlation between TAP1 and key transcription factors using the Kyoto encyclopedia of genes and genomes (KEGG) pathway in ovarian cancer. Immunological methods were used to evaluate the expression of TAP1 protein in ovarian and cervical cancer, and Kaplan–Meier analysis was used to analyze the prognostic value of TAP1. RNA interference (RNAi) was used to verify the effect of TAP1 on ovarian cancer. Compared with normal tissues, cancer tissues showed a significant increase in the expression of TAP1, and TAP1 expression was related to the poor prognosis of cancers such as ovarian cancer. The expression level of TAP1 was correlated with immune checkpoint genes, DNA methylation, tumor mutation burden, microsatellite instability, and neoantigens in various cancers. Our results showed that TAP1 was upregulated in ovarian cancer cell lines and was associated with poor prognosis. Further, we verified the expression of TAP1-related transcription factors (MEF2A and LEF1) and found that TAP1 was closely related to ovarian cancer metastasis in vitro and in vivo. These results indicated that TAP1 could be used as a biomarker for the diagnosis and prognosis of cancer and as a new therapeutic target.


2018 ◽  
Vol 36 (15_suppl) ◽  
pp. 3022-3022
Author(s):  
Sucha Sudarsanam ◽  
Forrest Blocker ◽  
Sally Agersborg ◽  
Vincent Anthony Funari ◽  
Shiping Jiang ◽  
...  

2021 ◽  
Author(s):  
Yinde Huang ◽  
Xin Li ◽  
Wenbin Chen ◽  
Yuzhen He ◽  
Song Wu ◽  
...  

Abstract Background : m6A methylation-related long non-coding RNAs (lncRNAs) play a significant role in the progression of various tumors and can be used as prognostic markers. However, whether m6A-related lncRNAs also play the same function as prognostic markers in papillary thyroid carcinoma (PTC) remains unclear. Methods : Consensus cluster analysis was performed to divide PTC samples obtained from The Cancer Genome Atlas database into two clusters according to the expression of m6A-related lncRNAs. Then, the least absolute shrinkage and selection operator (LASSO) regression analysis was performed to create and verify a prognostic model. Furthermore, the relationship among risk scores, clusters, programmed death-ligand 1 (PD-L1), tumor microenvironment (TME), clinicopathological characteristics, immune infiltration, immune checkpoint, and tumor mutation burden (TMB) was analyzed. In addition, a nomogram was created, and subsequently, the drug sensitivity of lncRNAs in the prognostic model was analyzed. Finally, the relationship between these lncRNAs and prognosis in pan-cancer was investigated. Results: The prognosis, RAS, BRAF, M, and TME were found to be different in two clusters. The prognostic model included three lncRNAs: PSMG3-AS1 , BHLHE40-AS1 , and AC016747.3 . The risk score was associated with clusters, PD-L1, tumor microenvironment, clinicopathological characteristics, immune cell infiltration, immune checkpoint, and TMB, and thus, risk score was confirmed as useful prognostic indicators. Differentially expressed lncRNAs are involved in many malignancies and can be identified as cancer prognostic makers. Conclusion : According to our research, we can regard m6A-related lncRNAs involved in the procession of PTC as a biomarker of PFS for PTC patients, and pan-cancer.


Sign in / Sign up

Export Citation Format

Share Document