scholarly journals Determination of the velocity of an opaque body moving uniformly by measurements inside it

Author(s):  
Nasko Elektronov

Abstract In this paper we show how the velocity of a moving uniform opaque body can be calculated without external references. This is done with the help of photodetectors, which measure the time of arrival of light from a point source to fixed equal distances inside the body. The calculation of the body’s velocity is based on the postulates of the special theory of relativity that space is homogeneous, isotropic and the speed of light in vacuum is an invariant constant with a certain value independent of the velocity of the radiation source.

2021 ◽  
Author(s):  
Sebastin Patrick Asokan

Abstract This paper shows that from the fact that the same Reality is perceived differently by the observers in different inertial frames, we can draw a simple and straightforward explanation for the constancy of light's speed in all inertial frames without any need for bringing in paradoxical Lorentz Transformation. This paper also proves that Lorentz Transformation has failed in its attempt to do the impossible task of establishing t' ≠ t to explain the constancy of the speed of light in all inertial frames without contradicting the interchangeability of frames demanded by the First Postulate of the Special Theory of Relativity. This paper also points out the misconceptions regarding the claimed experimental verifications of Lorentz Transformation's predictions in the Hafele–Keating experiment and μ meson experiment. This paper concludes that Einstein's Special Theory Relativity can stand on its own merits without Lorentz Transformation.


Author(s):  
Geoff Cottrell

By the beginning of the twentieth century, our understanding of matter was completely transformed by the great discoveries of electromagnetism and relativity. ‘Energy, mass, and light’ outlines Einstein’s special theory of relativity of 1905, which describes what happens when objects move at speeds close to the speed of light. The theory transformed our understanding of the nature of space and time, and matter through the equivalence of mass and energy. In 1916, Einstein extended the theory to include gravity in the general theory of relativity, which revealed that matter affects space by curving space around it.


2020 ◽  
Vol 33 (2) ◽  
pp. 211-215 ◽  
Author(s):  
Shukri Klinaku

Is the special theory of relativity (STR) a “simple” or “tricky” theory? They who think that it is a simple theory say (i) that its postulates are simple, that Nature is such, (ii) that the mathematics of STR is perfect, and (iii) that experiments support it. I consider its two postulates to be very true, whereas the mathematics of the STR has a shortcoming, and, as for the experiments, the question must be posed: which theory do they support best? The problem for STR lies in the transition from its postulates to its basic equations, i.e., Lorentz transformation and the velocity addition formula. The passage from the principle of relativity and the constancy of the speed of light to the basic equations of the STR is affected by four fundamental errors—three physical and one mathematical. Continuous attempts to reconcile these latent mistakes have made STR increasingly tricky. As a result, it is in a similar situation to Ptolemy's geocentric model after “improvements” thereto by Tycho Brahe. However, the “Copernican solution” for relative motion—offered by extended Galilean relativity—is very simple and effective.


2021 ◽  
Author(s):  
SEBASTIN PATRICK ASOKAN

Abstract This paper shows that from the fact that the same Reality is perceived differently by the observers in different inertial frames, we can draw a simple and straightforward explanation for the constancy of light's speed in all inertial frames without any need for bringing in paradoxical Lorentz Transformation. This paper shows that the premise that each inertial frame has its unique time, which Lorentz Transformation introduced to explain the constancy of the speed of light in all inertial frames is incompatible with the interchangeability of the frames, an essential requisite of the First Postulate of the Special Theory of Relativity. This paper also points out the misconceptions regarding the claimed experimental verifications of Lorentz Transformation's predictions in the Hafele–Keating experiment and μ meson experiment. This paper hints at the possibility of attributing the observed slowing down of fast-moving clocks to the Relativistic Variation of Mass with Velocity instead of Time Dilation. This paper concludes that Einstein's Special Theory Relativity can stand on its own merits without Lorentz Transformation.


2021 ◽  
Author(s):  
Dong Jun ◽  
Na Dong

Abstract In this paper, the special theory of relativity in different media is established, based on the fundamental invariant of the space-time four-dimensional space x2 + y2 + z2 - c2 t2 = x'2 + y'2 + z'2 - c' t'2 . First of all, the inertial coordinate system is strictly defined in mathematical language. The inertial coordinate system that uses the actual measured different speeds of light as the limit speed still retains its most basic characteristics as an inertial coordinate system. Then, the space-time coordinate transformation and velocity transformation formulas between inertial coordinate systems with different light velocity are derived. These results not only break through the limitation of "vacuum", but also all are exactly the same as the conclusions of the traditional special theory of relativity when c = c' ; and when c ≠ c' give the new physical content. This all lifted the threat of the theory of relativity by the speed of light experiment, making c = c' ; and c ≠ c' both inclusively under the basic point of view of the theory of relativity; which will inevitably broaden the way of using relativity to deal with physics problems and clarify many problems left over in the study of relativity. The article discusses the problem of relativistic kinematics involving the measurement of time and space, correctly interprets the effects of “ruler contraction” and “clock retardation”, and uncovers and correctly answers the “clock paradox” that accompanied the birth of relativity. For two motion systems S and S', that are separated from each other by constant velocity, at any time and where, the product of the proper time elapsed evenly and uniformly and the speed of light in the respective system are equal, cτ = c' τ'; and the product of the coordinates time read out in observing and recognizing the other party's proper time and the speed of light in the respective system are also equal, ct = c' t' . It is confirmed that the product of any moving individual's uniform disappearance proper time and its measured speed of light remain unchanged; and the proper time cannot be determined purely by the individual's subjective way. Deduced the uncertain relationship between the proper time and the coordinate time for an inertial coordinate system which was not noticed by the traditional special theory of relativity. Remind the practical astronomy workers who do the time measurement and the time service work to understand that it is impossible to equate practical scientific coordinate time and the proper time of ideal uniform disappearance (the so-called “Ephemeris Time”). Thereby pay attention to the impact of this uncertain relationship on the time measurement and the time service work, and propose ways to verify. Subsequent work will use this expanded special theory of relativity to conduct a comprehensive review of related physics, which will inevitably extend to issues that have not been or cannot be examined by traditional special theory of relativity.


2021 ◽  
Author(s):  
Na Dong ◽  
Dong Jun

Abstract This paper analyzes the problems and contradictions that occur when the traditional special theory of relativity which uses the speed of light in a vacuum as an invariant constant, studies the propagation of light in media. These problems are re-examined and discussed with the special theory of relativity of variable speed of light. The transformation relationship of the characteristic quantities describing light wave frequency ν, phase velocity w and the direction angle α of the wave normal between the two inertial coordinate systems in vacuum S and in medium S' were derived; combining the transformation of the light ray speed u which describes light granular motion, the de Broglie wave-particle velocity relationship in the vacuum u w = c2 is νextended to the medium to become u' w' = c'2. Corrected the approach of the traditional special theory of relativity when dealing with these problems, in which the transformation from the space-time coordinates to the relevant physical quantity is limited to the half-sided transformation of the media into the vacuum (not two sided transformation), so that the resulting contradictions and problems are all solved. Optical experiments that support the traditional special theory of relativity, such as the Fizeau experiment and the Michelson-Morley experiment, not only still support and agree with the generalized special theory of relativity with variable speed of light, but also obtain a more correct and satisfactory interpretation from it.


2020 ◽  
Author(s):  
mohamed abouzeid

According to Einstein's first hypothesis only, it can be reached to transfer formats Between reference frames in the special theory of relativity


2021 ◽  
Author(s):  
Dong Jun ◽  
Na Dong

Abstract In the general theory of relativity the four-dimensional space-time described the accelerated motion or moves in a gravitational field of a mass body, from the perspective of integral geometry, although it is a curved Riemannian geometric space, but for any instantaneous position of the moving mass body, there is a local Flat Space of Riemannian geometric space. The local Flat Space is a Mincowski space in which the inertial coordinate system can be used in the local small area. Between the proper coordinate systems of two interacting moving masses, or between a series of follow-up proper coordinate systems experienced by a mass body moving in any way, there must be a coordinate transformation relationship similar to the traditional special theory of relativity. However, they have an important difference: In these instantaneous local inertial systems, the speed of light is no longer the constant c of vacuum, the effect of gravitational field or acceleration on the speed of light is the same as that of a medium with a dielectric constant of ε and a permeability of μ. Using the special theory of relativity with variable speed of light that the author has established can discuss relevant relativity physics issues in these instantaneous local inertial systems. This article uses the special theory of relativity with variable speed of light to infer the functional relationship between a moving mass and the change of speed. In addition to obtaining the traditional continuous increasing function relationship, a step function relationship with stepped discontinuous changes is also obtained. At the same speed, the mass can have two values, such as a ladder upgrade one level; the same mass can be matched with two different speeds, such as one step extension forward on the same step stair. From the perspective of the increase in speed, the mass is stagnant on the step platform (the speed increases, the mass does not change), and it jumps in the step up ladder (the speed does not change, the mass has a jump change). This obviously incorporates the main image of quantum theory into the theory of relativity, which is the result that all physics researchers care about and expect.


Sign in / Sign up

Export Citation Format

Share Document