scholarly journals Laboratory and field evaluation of MAÏA®, an ointment containing N, N-Diethyl-3-methylbenzamide (DEET) against mosquitoes in Burkina Faso

2020 ◽  
Author(s):  
Alphonse Traore ◽  
Gérard Niyondiko ◽  
Antoine Sanou ◽  
Franck Langevin ◽  
N'falé Sagnon ◽  
...  

Abstract BackgroundMalaria vector control relies upon the use of insecticide treated nets and the Indoor Residual Spraying. However, as the emergency of insecticide resistance in malaria vectors grows, the effectiveness of these measures could be limited. Thus, alternative tools are needed. In this context, repellents can play an important role against exophagic and exophilic mosquitoes. This study evaluated the efficacy of MAÏA® , a novel repellent ointment, in laboratory and field conditions in Burkina Faso.For the Laboratory and field assessment, twenty volunteers were enrolled and trained for nocturnal collection of mosquitoes using Human Landing Catches (HLC).MethodsIn the laboratory tests, 2 mg / cm2 of treatments (either the MAIA® or the 20% DEET) were used to assess median Complete Protection (CPT) against two species that includes Anopheles gambiae and Aedes aegypti following the WHO guidelines. For both species two strains consisting of susceptible and local strains were used. The susceptible strains were Kisumu and Bora Bora respectively for Anopheles gambiae and Aedes aegypti. For the field test, the median CPT of the MAIA was compared to that of a negative (70% Ethanol) and positive (20% DEET) after carrying out human landing catches in rural Burkina Faso in both indoor and outdoor settings. ResultsLaboratory tests showed median Kaplan–Meier Complete Protection Times (CPT) of 6 hours 30 minutes for Anopheles gambiae (Kisumu), of 5 hours 30 minutes for Anopheles gambiae (Goden, local strain) and of 4 hours for Aedes aegypti for both the local and sensitive strain. Thus, these laboratory results suggest MAÏA® is a good repellent against the three mosquito species. Field tests showed that median CPT of 20% DEET and MAÏA® were similar (8 hours) and longer than that of the negative control (2 hours).During these field test, in the field a total of 3,979 mosquitoes were caught. In this population, Anopheline represented 98.5% and the culicine (Aedes) making up the remaining 1.5%. Among anopheline mosquitoes, 95% belonged to Anopheles gambiae complex, followed by Anopheles funestus, and Anopheles pharoensis. The median CPT of 20% DEET and MAÏA® were similar (8 hours) and longer than that of the negative control (2 hours).ConclusionResults from the present studies showed that MAÏA® offers high protection against Anophelines biting indoor and outdoor and could play an important role in malaria control in Africa.

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Dieudonné Diloma Soma ◽  
Barnabas Zogo ◽  
Domonbabele François de Sales Hien ◽  
Aristide Sawdetuo Hien ◽  
Didier Alexandre Kaboré ◽  
...  

Abstract Background The rapid spread of insecticide resistance in malaria vectors and the rebound in malaria cases observed recently in some endemic areas underscore the urgent need to evaluate and deploy new effective control interventions. A randomized control trial (RCT) was conducted with the aim to investigate the benefit of deploying complementary strategies, including indoor residual spraying (IRS) with pirimiphos-methyl in addition to long-lasting insecticidal nets (LLINs) in Diébougou, southwest Burkina Faso. Methods We measured the susceptibility of the Anopheles gambiae (s.l.) population from Diébougou to conventional insecticides. We further monitored the efficacy and residual activity of pirimiphos-methyl on both cement and mud walls using a laboratory susceptible strain (Kisumu) and the local An. gambiae (s.l.) population. Results An. gambiae (s.l.) from Diébougou was resistant to DDT, pyrethroids (deltamethrin, permethrin and alphacypermethrin) and bendiocarb but showed susceptibility to organophosphates (pirimiphos-methyl and chlorpyrimiphos-methyl). A mixed-effect generalized linear model predicted that pirimiphos-methyl applied on cement or mud walls was effective for 210 days against the laboratory susceptible strain and 247 days against the local population. The residual efficacy of pirimiphos-methyl against the local population on walls made of mud was similar to that of cement (OR = 0.792, [0.55–1.12], Tukey’s test p-value = 0.19). Conclusions If data on malaria transmission and malaria cases (as measured trough the RCT) are consistent with data on residual activity of pirimiphos-methyl regardless of the type of wall, one round of IRS with pirimiphos-methyl would have the potential to control malaria in a context of multi-resistant An. gambiae (s.l.) for at least 7 months.


2020 ◽  
Author(s):  
Sawdetuo Aristide HIEN ◽  
Dieudonné Diloma Soma ◽  
Simon Pengwende Sawadogo ◽  
Serge Bèwadéyir Poda ◽  
Moussa Namountougou ◽  
...  

Abstract Background The fight against vector is essential in malaria prevention strategies in several endemic countries in Africa. In Burkina Faso, malaria transmission is seasonal in most parts of country, so a single round of spraying should provide effective protection against malaria, provided the insecticide remains effective over the entire malaria transmission season. The outcomes of indoor residual spraying towards curtailing malaria transmission are firstly to decrease the life span of vector mosquitoes and also to reduce the malaria vectors density. Methods CDC light trap and early morning collections by pyrethrum spray catches were performed monthly to determine the change in malaria vector indices in sprayed (Diebougou) and unsprayed sites (Dano). The female’s malaria vectors collected by both methods were used to determine their blood feeding, biting and sporozoites rate and malaria transmission risk estimated by entomological inoculation rate. Results Anopheles gambiae complex composed to Anopheles gambiae, Anopheles coluzzii and Anopheles arabiensis were present throughout the transmission season, but An. gambiae was the predominant species collected (P =0.0005), comprising 88% of the total collected and the most infected species. Malaria vectors densities were significantly lower in sprayed villages (n=4,303) compared with unsprayed villages (n=12,569) during post-spraying period (P = 0.0012). In addition, mean human biting rate of An. gambiae sl and An . funestus ss were significantly lower in sprayed areas compared to unsprayed areas (P<0.05). Overall, malaria vector transmission risk was significant lower in villages which received IRS (P=0.0001) whatever the malaria vectors species ( An. gambiae sl and An. funestus ss). Conclusions The results showed that in the sprayed area (Diebougou), vector densities, human biting rates and malaria transmission risks were very lower than unsprayed areas (Dano). The findings also showed a change in vector behavior especially within An. funestus which became more zoophagic following IRS. The indoor residual spraying could be recommanded as control tool in areas where malaria transmission occured a given period of year.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Alphonse Traoré ◽  
Gérard Niyondiko ◽  
Antoine Sanou ◽  
Franck Langevin ◽  
N’Falé Sagnon ◽  
...  

Abstract Background Malaria vector control relies upon the use of insecticide-treated nets and indoor residual spraying. However, as the emergency of insecticide resistance in malaria vectors grows, the effectiveness of these measures could be limited. Alternative tools are needed. In this context, repellents can play an important role against exophagic and exophilic mosquitoes. This study evaluated the efficacy of MAÏA®, a novel repellent ointment, in laboratory and field conditions in Burkina Faso. Methods For laboratory and field assessment, 20 volunteers were enrolled and trained for nocturnal collection of mosquitoes using human landing catches (HLC). In the laboratory tests, 2 mg/sq cm of treatment (either MAIA® or 20 % DEET) were used to assess median complete protection time (CPT) against two species: Anopheles gambiae and Aedes aegypti, following WHO guidelines. For both species, two strains consisting of susceptible and local strains were used. The susceptible strains were Kisumu and Bora Bora for An. gambiae and Ae. aegypti, respectively. For the field test, the median CPT of MAÏA® was compared to that of a negative (70 % ethanol) and positive (20 % DEET) after carrying out HLCs in rural Burkina Faso in both indoor and outdoor settings. Results Laboratory tests showed median Kaplan-Meier CPT of 6 h 30 min for An. gambiae (Kisumu), 5 h 30 min for An. gambiae (Goden, local strain), and 4 h for Ae. aegypti for both the local and sensitive strain. These laboratory results suggest that MAÏA® is a good repellent against the three mosquito species. During these field tests, a total of 3979 mosquitoes were caught. In this population, anophelines represented 98.5 %, with culicines (Aedes) making up the remaining 1.5 %. Among anopheline mosquitoes, 95 % belonged to the An. gambiae complex, followed by Anopheles funestus and Anopheles pharoensis. The median CPT of 20 % DEET and MAÏA® were similar (8 h) and much longer than that of the negative control (2 h). Conclusions Results from the present studies showed that MAÏA® offers high protection against anophelines biting indoors and outdoors and could play an important role in malaria prevention in Africa.


2018 ◽  
Vol 2018 ◽  
pp. 1-5
Author(s):  
Shandala Msangi ◽  
Eliningaya Kweka ◽  
Aneth Mahande

A study was conducted to assess efficacy of a new repellent brand TRIG (15% N-N Diethyl Benzamide) when compared to DEET (20% N-N Methyl Toluamide). The repellents were tested in laboratory and field. In the laboratory, the repellence was tested on human volunteers, by exposing their repellent-treated arms on starved mosquitoes in cages for 3 minutes at hourly intervals, while counting the landing and probing attempts. Anopheles gambiae and Aedes aegypti mosquitoes were used. Field evaluation was conducted by Human Landing Catch technique. During the night, the repellents were applied on arms and legs and mosquitoes landing on these areas were collected. In laboratory tests, TRIG provided complete protection (100%) against Anopheles gambiae when applied at 1.25 g, while DEET provided this at 0.75 g. When tested on Aedes aegypti, TRIG provided complete protection when applied at 1 g, compared to 0.5 g for DEET. In the field, when applied at a recommended dose, both TRIG and DEET achieved above 90% protection against both An. arabiensis and Culex quinquefasciatus and a Complete Protection Time of about 6 hrs against both species of mosquitoes. The performances of the two products were found to be comparable and TRIG was recommended for use as repellent against mosquito bites.


2020 ◽  
Author(s):  
Dieudonné D. Soma ◽  
Barnabas M. Zogo ◽  
François D. Hien ◽  
Aristide S. Hien ◽  
Didier P.A. Kaboré ◽  
...  

AbstractThe rapid spread of insecticide resistance in malaria vectors and the rebound in malaria cases observed recently in some endemic areas underscore the urgent need to evaluate and deploy new effective control interventions. A randomized control trial was conducted with the aim to investigate the benefit of deploying complementary strategies, including indoor residual spraying (IRS) with pirimiphos-methyl, in addition to long-lasting insecticidal nets (LLINs) in Diébougou, southwest Burkina Faso. We measured the susceptibility of Anopheles gambiae s.l. population from Diébougou to conventional insecticides. We further monitored the efficacy and residual activity of pirimiphos-methyl on both cement and mud walls using a laboratory susceptible strain (Kisumu) and the local An. gambiae s.l. population. An. Gambiae s.l. from Diébougou was resistant to pyrethroids (deltamethrin, permethrin and alphacypermethrin) and bendiocarb but showed susceptibility to organophosphates (pirimiphos-methyl and chlorpyrimiphos-methyl). A mixed-effect generalized linear model predicted that pirimiphos-methyl applied on cement or mud walls was effective for 210 days against the laboratory susceptible strain and 247 days against the local population. The residual efficacy of pirimiphos-methyl against the local population on walls made of mud was similar to that of cement (OR=0.792, [0.55-1.12], Tukey’s test p-value =0.19). This study showed that one round of IRS with pirimiphos-methyl CS has the potential to control the multi-resistant An. gambiae s.l. population from Southwest Burkina Faso for at least 7 months, regardless of the type of wall.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Emmanuel Mbuba ◽  
Olukayode G. Odufuwa ◽  
Frank C. Tenywa ◽  
Rose Philipo ◽  
Mgeni M. Tambwe ◽  
...  

Abstract Background N,N-Diethyl-3-methylbenzamide (DEET) topical mosquito repellents are effective personal protection tools. However, DEET-based repellents tend to have low consumer acceptability because they are cosmetically unappealing. More attractive formulations are needed to encourage regular user compliance. This study evaluated the protective efficacy and protection duration of a new topical repellent ointment containing 15% DEET, MAÏA® compared to 20% DEET in ethanol using malaria and dengue mosquito vectors in Bagamoyo Tanzania. Methods Fully balanced 3 × 3 Latin square design studies were conducted in large semi-field chambers using laboratory strains of Anopheles gambiae sensu stricto, Anopheles arabiensis and Aedes aegypti. Human volunteers applied either MAÏA® ointment, 20% DEET or ethanol to their lower limbs 6 h before the start of tests. Approximately 100 mosquitoes per strain per replicate were released inside each chamber, with 25 mosquitoes released at regular intervals during the collection period to maintain adequate biting pressure throughout the test. Volunteers recaptured mosquitoes landing on their lower limbs for 6 h over a period of 6 to 12-h post-application of repellents. Data analysis was conducted using mixed-effects logistic regression. Results The protective efficacy of MAÏA® and 20% DEET was not statistically different for each of the mosquito strains: 95.9% vs. 97.4% against An. gambiae (OR = 1.53 [95% CI 0.93–2.51] p = 0.091); 96.8% vs 97.2% against An. arabiensis (OR = 1.08 [95% CI 0.66–1.77] p = 0.757); 93.1% vs 94.6% against Ae. aegypti (OR = 0.76 [95% CI 0.20–2.80] p = 0.675). Average complete protection time (CPT) in minutes of MAÏA® and that of DEET was similar for each of the mosquito strains: 571.6 min (95% CI 558.3–584.8) vs 575.0 min (95% CI 562.1–587.9) against An. gambiae; 585.6 min (95% CI 571.4–599.8) vs 580.9 min (95% CI 571.1–590.7) against An. arabiensis; 444.1 min (95% CI 401.8–486.5) vs 436.9 min (95% CI 405.2–468.5) against Ae. aegypti. Conclusions MAÏA® repellent ointment provides complete protection for 9 h against both An. gambiae and An. arabiensis, and 7 h against Ae. aegypti similar to 20% DEET (in ethanol). MAÏA® repellent ointment can be recommended as a tool for prevention against outdoor biting mosquitoes in tropical locations where the majority of the people spend an ample time outdoor before going to bed.


2019 ◽  
Vol 18 (1) ◽  
Author(s):  
Antoine Sanou ◽  
W. Moussa Guelbéogo ◽  
Luca Nelli ◽  
K. Hyacinth Toé ◽  
Soumanaba Zongo ◽  
...  

Abstract Background Measuring human exposure to mosquito bites is a crucial component of vector-borne disease surveillance. For malaria vectors, the human landing catch (HLC) remains the gold standard for direct estimation of exposure. This method, however, is controversial since participants risk exposure to potentially infected mosquito bites. Recently an exposure-free mosquito electrocuting trap (MET) was developed to provide a safer alternative to the HLC. Early prototypes of the MET performed well in Tanzania but have yet to be tested in West Africa, where malaria vector species composition, ecology and behaviour are different. The performance of the MET relative to HLC for characterizing mosquito vector population dynamics and biting behaviour in Burkina Faso was evaluated. Methods A longitudinal study was initiated within 12 villages in Burkina Faso in October 2016. Host-seeking mosquitoes were sampled monthly using HLC and MET collections over 14 months. Collections were made at 4 households on each night, with METs deployed inside and outside at 2 houses, and HLC inside and outside at another two. Malaria vector abundance, species composition, sporozoite rate and location of biting (indoor versus outdoor) were recorded. Results In total, 41,800 mosquitoes were collected over 324 sampling nights, with the major malaria vector being Anopheles gambiae sensu lato (s.l.) complex. Overall the MET caught fewer An. gambiae s.l. than the HLC (mean predicted number of 0.78 versus 1.82 indoors, and 1.05 versus 2.04 outdoors). However, MET collections gave a consistent representation of seasonal dynamics in vector populations, species composition, biting behaviour (location and time) and malaria infection rates relative to HLC. As the relative performance of the MET was somewhat higher in outdoor versus indoor settings, this trapping method slightly underestimated the proportion of bites preventable by LLINs compared to the HLC (MET = 82.08%; HLC = 87.19%). Conclusions The MET collected proportionately fewer mosquitoes than the HLC. However, estimates of An. gambiae s.l. density in METs were highly correlated with HLC. Thus, although less sensitive, the MET is a safer alternative than the HLC. Its use is recommended particularly for sampling vectors in outdoor environments where it is most sensitive.


2020 ◽  
Author(s):  
Emmanuel Mbuba ◽  
Olukayode Odufuwa ◽  
Frank Tenywa ◽  
Rose Philipo ◽  
Mgeni Tambwe ◽  
...  

Abstract Background: N,N-Diethyl-3-methylbenzamide (DEET) topical mosquito repellents are effective personal protection tools. However, DEET-based repellents tend to have low consumer acceptability because they are cosmetically unappealing. More attractive formulations are needed to encourage regular user compliance. This study evaluated the protective efficacy and protection duration of a new topical repellent ointment containing 15% DEET, MAÏA® compared to 20% DEET in ethanol using malaria and dengue mosquito vectors in Bagamoyo Tanzania.Methods: Fully balanced 3x3 Latin square design studies were conducted in large semi-field chambers using laboratory strains of Anopheles gambiae s.s, An. arabiensis and Aedes aegypti. Human volunteers applied either MAÏA® ointment, 20% DEET or ethanol to their lower limbs six hours before the start of tests. Approximately 100 mosquitoes per strain per replicate were released inside each chamber, with 25 mosquitoes released at regular intervals during the collection period to maintain adequate biting pressure throughout the test. Volunteers recaptured mosquitoes landing on their lower limbs for six hours over a period of six to 12-hours post-application of repellents. Data analysis was conducted using mixed-effects logistic regression.Results: The protective efficacy of MAÏA® and 20% DEET was not different for each of the mosquito strains: 95.9% vs 97.4% against An. gambiae (OR=1.53 [95% CI: 0.93–2.51] p=0.091); 96.8% vs 97.2% against An. arabiensis (OR =1.08 [95% CI: 0.66 –1.77] P=0.757); 93.1% vs 94.6% against Ae. aegypti (OR=0.76 [95% CI: 0.20-2.80] p=0.675). Average complete protection time (CPT) of MAÏA® and that of DEET was similar for each of the mosquito strains: 571.6 minutes (95% CI: 558.3-584.8) vs 575.0 minutes (95% CI: 562.1-587.9) against An. gambiae; 585.6 minutes (95% CI: 571.4-599.8) vs 580.9 minutes (95% CI: 571.1-590.7) against An. arabiensis; 444.1 minutes (95% CI: 401.8-486.5) vs 436.9 minutes (95% CI: 405.2-468.5) against Ae. aegypti.Conclusions: MAÏA® repellent ointment provides complete protection for 9 hours against both An. gambiae and An. arabiensis, and 7 hours against Ae. aegypti similar to 20% DEET (in ethanol). MAÏA® repellent ointment can be recommended to be used as a tool for prevention of outdoor biting mosquitoes in tropical locations as it protects for more than 6 hours.


2019 ◽  
Author(s):  
D.D Soma ◽  
B Zogo ◽  
P Taconet ◽  
A Somé ◽  
S Coulibaly ◽  
...  

AbstractBackgroundTo sustain the efficacy of malaria vector control, the World Health Organization (WHO) recommends the combination of effective tools. Before designing and implementing additional strategies in any setting, it is critical to monitor or predict when and where transmission occurs. However, to date, very few studies have quantified the behavioural interactions between humans and Anopheles vectors. Here, we characterized residual transmission in a rural area of Burkina Faso where long lasting insecticidal nets (LLIN) are widely used.MethodsWe analysed data on both human and malaria vectors behaviours from 27 villages to measure hourly human exposure to vector bites in dry and rainy seasons using mathematical models. We estimated the protective efficacy of LLINs and characterised where (indoors vs. outdoors) and when both LLIN users and non-users were exposed to vector bites.ResultsThe percentage of the population who declared sleeping under a LLIN the previous night was very high regardless of the season, with an average LLIN use ranging from 92.43% to 99.89%. The use of LLIN provided > 80% protection against exposure to vector bites. The proportion of exposure for LLIN users was 29-57% after 05:00 and 0.05-12 % before 20:00. More than 80% of exposure occurred indoors for LLIN users and the estimate reached 90% for children under five years old in the dry cold season.ConclusionsThis study supports the current use of LLIN as a primary malaria vector control tool. It also emphasises the need to complement LLIN with indoor-implemented measures such as indoor residual spraying (IRS) and/or house improvement to effectively combat malaria in the rural area of Diébougou. Furthermore, malaria elimination programmes would also require strategies that target outdoor biting vectors to be successful in the area.


2020 ◽  
Author(s):  
Mgeni Mohamed Tambwe ◽  
Sarah Moore ◽  
Hassan Chilumba ◽  
Johnson Kyeba Swai ◽  
Jason Moore ◽  
...  

Abstract Background The use of volatile pyrethroids and odor-baited traps in a push-pull system has been shown to reduce house entry and outdoor bites for malaria vectors. This technology has the potential to control other outdoor biting mosquitoes such as Aedes aegypti that transmit arboviral diseases. In this study, semi-field experiments were conducted to evaluate whether a push-pull system could be used to reduce bites from Aedes.Methods The push and pull under investigation consisted of two freestanding transfluthrin passive emanators (FTPE), and a BG sentinel trap (BGS) respectively. The FTPE contained hessian strips treated with 5.25 g of transfluthrin active ingredient. The efficacies of FTPE and BGS alone and in combination were evaluated by human landing catch in a large semi-field system in Tanzania. We also investigated the protection of FTPE over six months. The data was analyzed using generalized linear mixed models with binomial distribution.Results Two FTPE have a protective efficacy (PE) of 61% (95% Confidence interval (CI): 52.18–69.91) against human landing rate of Aedes aegypti. The BGS did not significantly reduce mosquito landings; the PE was 2.14% (95% CI: -2.87-7.16). The combination of FTPE and BGS (push-pull) provided the PE of 64.46% (95% CI: 59.06–69.85). However, there was no significant difference in the protective efficacy between the push-pull and the two FTPE against Ae. aegypti (p = 0.286). The FTPE offered significant protection against Ae. aegypti at month three, with a PE of 46.44% (95% CI: 41.12–51.76), but not at six months with a PE of 2.20% (95% CI: -9.00-14.02).Conclusions The protective efficacy of the FTPE and the full push-pull system are similar, indicative that bite prevention is primarily due to the activity of the FTPE. While these results are encouraging for the FTPE, further work is needed for a push-pull system to be recommended for Ae. aegypti control. The three-month protection provided by the FTPE against Ae. aegypti bites suggests it would be a useful additional personal protection tool during dengue outbreaks, that does not require regular user compliance.


Sign in / Sign up

Export Citation Format

Share Document