scholarly journals Flow Induced By A Rotating Microchannel-A Numerical Study

Author(s):  
Kashif Ali ◽  
Shahzad Ahmad ◽  
Anique Ahmad ◽  
Faisal Ali

Abstract In this paper, a mathematical foundation has been developed for the primary understanding of complex interaction of the wall slip with the Coriolis and Lorentz forces acting orthogonally on the Electromagnetohydrodynamic (EMHD) flow of a power-law fluid in a microchannel. Modified Navier Stokes equations are solved numerically by incorporating the fully implicit computational scheme with suitable initial and boundary conditions, which generates numerical results in excellent comparison with the literature for a certain limiting case. An extensive effort has been made to understand how the Hartmann number, fluid behavior index, rotating Reynolds number, and slip parameter affects the flow. Results show the velocity of the power-law fluid depends strongly on flow parameters. Critical Hartmann number can be obtained for the power-law fluid in presence of uniform electric and magnetic fields. As a promising phenomenon, existence of a cross over point (which depends upon the fluid behavior index) for the centerline flow velocity, has also been predicted. Reduction in the shear stress and fluid viscosity can be controlled effectively by incorporating a slippery film of lubricant on the periphery of the microchannel. This work is useful to meet the upcoming challenges of future generation, like improvement in bio-magnetic-sensor technologies as well as electrical and mechanical mechanisms.

2018 ◽  
Vol 73 (9) ◽  
pp. 825-831 ◽  
Author(s):  
Shaowei Wang ◽  
Ning Li ◽  
Moli Zhao ◽  
Martin N. Azese

AbstractIn this paper, the effect of slip velocity on the rotating electro-osmotic flow (EOF) of the power-law fluid in a non-uniform microchannel under high zeta potential is investigated. The potential distribution of the electric double layer is obtained by using the nonlinear Poisson-Boltzmann equation. By using the finite difference method, the numerical solution of the rotating EOF velocity profile is obtained. The effectiveness and correctness of the present numerical method is proven by comparing the results with the analytical solutions of the Newtonian fluid given by a previous study. The influences of the fluid behavior indexnand the slip parameterβon the velocity profiles are also discussed in detail.


Author(s):  
Marion Duclercq ◽  
Daniel Broc

This paper deals with a vibratory problem of fluid-structure interaction. It considers the two-dimensional case of a rigid, smooth and circular cylinder undergoing transverse sinusoidal oscillations and immersed in a viscous fluid otherwise at rest. Our work is focused on the in-line force acting on the cylinder in unsteady laminar flow. The aim is to understand the variations of the force with time according to the configuration of the physical system. For that the analysis will also use an energetic approach based on the power balance. The physical system can be characterized by two non-dimensional numbers: the Reynolds number (Re) compares the importance of the fluid viscosity to its inertia, and the Keulegan-Carpenter number (Kc) measures the amplitude of the cylinder displacement compared to its diameter. First the incompressible Navier-Stokes equations are solved numerically by means of a finite elements method. The flow structure is analyzed by determining the evolution with time and throughout the computational domain of flow quantities, such as pressure field, vorticity field or stream lines. We also calculate the values versus time of the different terms occurring in the mean force balance and power balance. We compare these results for several pairs (Kc, Re) of “extreme” values. Thus it appears three characteristic configurations: the inertial Euler case (Kc≪1 and inviscid fluid), the Stokes case (Kc≪1 and Re≫1) and the drag case (Kc≫1). For these three reference configurations the physical mechanisms operating in the system are identified. But in intermediate cases, particularly when Kc>1, every mechanisms interact. Consequently the evolution of the force acting on the cylinder versus time is more complex and its interpretation becomes less straightforward. That is why a quantitative energetic analysis is carried out. We define a measure of the dissipative energy present in the flow. Then we compare the values of that coefficient for different cases throughout the map (Kc, Re).


2013 ◽  
Vol 394 ◽  
pp. 86-91
Author(s):  
Shan Bo Huang ◽  
Liang Gong ◽  
Zhao Min Li

A mathematical model of pulsating laminar flow inside an annular space for power-law fluid was established basing on the background of petroleum engineering. The characteristic of pulsating flow was obtained by employed SIMPLE algorithm. The investigation result shows that the velocity profile and axial pressure gradient are affected by the frequency, amplitude, liquidity index and annular distance of reciprocating motion and the affection is violent near the inner wall.


1992 ◽  
Vol 59 (2) ◽  
pp. 431-437 ◽  
Author(s):  
M. G. Satish ◽  
J. Zhu

Finite difference solutions for a power-law fluid flow through an assemblage of solid particles at low Reynolds numbers are obtained using both the free-surface cell model and the zero-vorticity cell model. It is shown that, unlike in the case of power-law fluid flow past a single solid sphere, the flow drag decreases with decrease of flow behavior index, and that the degree of this reduction is more significant at low voidage. The results from this study are found to be in good agreement with the approximate solutions at slight pseudoplastic anomaly and the available experimental data. The results are presented in closed form and compare favorably with the variational bounds and the modified Blake-Kozeny equations. Numerical results show that a decrease in the flow behavior index leads to a slight increase in the mass transfer rate for an assemblage of solid spheres, but this increase is found to be small compared with that for a single solid sphere.


Sign in / Sign up

Export Citation Format

Share Document