scholarly journals Glycerol promoted the anaerobic production of rhamnolipids by different Pseudomonas aeruginosa strains

2020 ◽  
Author(s):  
Feng Zhao ◽  
Chao Guo ◽  
Qingfeng Cui

Abstract Background: Rhamnolipids is the most widely studied and applied biosurfactants. The anaerobic biosynthesis of rhamnolipids has important research and practical significance, such as meeting the in situ production of biosurfactant in anoxic environments and the foamless fermentation of biosurfactants. A few studies have reported the anaerobic biosynthesis of rhamnolipids from rare Pseudomonas aeruginosa strains. What did promote the anaerobic biosynthesis of rhamnolipids, the specificity of the rare strains or the effect of specific substrates? Here, anaerobic production of rhamnolipids by different P. aeruginosa strains was investigated using diverse substrates. The anaerobic biosynthesis mechanism of rhamnolipids were also discussed from the substrate point of view.Results: All P. aeruginosa strains anaerobically grew well using the tested substrates. But all P. aeruginosa strains anaerobically produced rhamnolipids only using substrates containing glycerol and nitrate. Fourier transform infrared (FTIR) spectra analysis confirmed the anaerobic production of rhamnolipids from all P. aeruginosa strains. All the anaerobically produced rhamnolipids decreased air-water surface tension from 72.6 mN/m to below 29.0 mN/m and emulsified crude oil with EI24 above 65%. Using crude glycerol as low-cost substrate, all P. aeruginosa strains can anaerobically grow and produce rhamnolipids to reduce the culture surface tension below 35 mN/m. The glycerol metabolic intermediate, 1, 2-propylene glycol, can also achieve the anaerobic production of rhamnolipids by all P. aeruginosa strains.Conclusions: Not the specificity of the rare P. aeruginosa strains but the effect of specific substrates promote the anaerobic biosynthesis of rhamnolipids by P. aeruginosa. Glycerol and nitrate are the excellent substrates for anaerobic production of rhamnolipids from all P. aeruginosa strains. Results indicated that glycerol metabolism involveed the anaerobic biosynthesis of rhamnolipids in P. aeruginosa. Results also showed the feasibility of using crude glycerol as low cost substrate to anaerobically biosynthesize rhamnolipids by P. aeruginosa.

2021 ◽  
Author(s):  
Feng Zhao ◽  
Mengyao Zheng ◽  
Qingfeng Cui

Abstract Background: Rhamnolipids is the most widely studied and applied biosurfactants. The anaerobic biosynthesis of rhamnolipids has important research and practical significance, such as meeting the in situ production of biosurfactant in anoxic environments and the foamless fermentation of biosurfactants. A few studies have reported the anaerobic biosynthesis of rhamnolipids from rare Pseudomonas aeruginosa strains. What did promote the anaerobic biosynthesis of rhamnolipids, the specificity of the rare strains or the effect of specific substrates? Here, anaerobic production of rhamnolipids by different P. aeruginosa strains was investigated using diverse substrates. The anaerobic biosynthesis mechanism of rhamnolipids were also discussed from the substrate point of view.Results: All P. aeruginosa strains anaerobically grew well using the tested substrates. But all P. aeruginosa strains anaerobically produced rhamnolipids only using substrates containing glycerol and nitrate. Fourier transform infrared (FTIR) spectra analysis confirmed the anaerobic production of rhamnolipids from all P. aeruginosa strains. All the anaerobically produced rhamnolipids decreased air-water surface tension from 72.6 mN/m to below 29.0 mN/m and emulsified crude oil with EI24 above 65%. Using crude glycerol as low-cost substrate, all P. aeruginosa strains can anaerobically grow and produce rhamnolipids to reduce the culture surface tension below 35 mN/m. The glycerol metabolic intermediate, 1, 2-propylene glycol, can also achieve the anaerobic production of rhamnolipids by all P. aeruginosa strains.Conclusions: Not the specificity of the rare P. aeruginosa strains but the effect of specific substrates promote the anaerobic biosynthesis of rhamnolipids by P. aeruginosa. Glycerol and nitrate are the excellent substrates for anaerobic production of rhamnolipids from all P. aeruginosa strains. Results indicated that glycerol metabolism involveed the anaerobic biosynthesis of rhamnolipids in P. aeruginosa. Results also showed the feasibility of using crude glycerol as low cost substrate to anaerobically biosynthesize rhamnolipids by P. aeruginosa.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Feng Zhao ◽  
Yuting Wu ◽  
Qingzhi Wang ◽  
Mengyao Zheng ◽  
Qingfeng Cui

Abstract Background The anaerobic production of rhamnolipids is significant in research and application, such as foamless fermentation and in situ production of rhamnolipids in the anoxic environments. Although a few studies reported that some rare Pseudomonas aeruginosa strains can produce rhamnolipids anaerobically, the decisive factors for anaerobic production of rhamnolipids were unknown. Results Two possible hypotheses on the decisive factors for anaerobic production of rhamnolipids by P. aeruginosa were proposed, the strains specificity of rare P. aeruginosa (hypothesis 1) and the effect of specific substrates (hypothesis 2). This study assessed the anaerobic growth and rhamnolipids synthesis of three P. aeruginosa strains using different substrates. P. aeruginosa strains anaerobically grew well using all the tested substrates, but glycerol was the only carbon source that supported anaerobic production of rhamnolipids. Other carbon sources with different concentrations still failed for anaerobic production of rhamnolipids by P. aeruginosa. Nitrate was the excellent nitrogen source for anaerobic production of rhamnolipids. FTIR spectra analysis confirmed the anaerobically produced rhamnolipids by P. aeruginosa using glycerol. The anaerobically produced rhamnolipids decreased air-water surface tension to below 29.0 mN/m and emulsified crude oil with EI24 above 65%. Crude glycerol and 1, 2-propylene glycol also supported the anaerobic production of rhamnolipids by all P. aeruginosa strains. Prospects and bottlenecks to anaerobic production of rhamnolipids were also discussed. Conclusions Glycerol substrate was the decisive factor for anaerobic production of rhamnolipids by P. aeruginosa. Strain specificity resulted in the different anaerobic yield of rhamnolipids. Crude glycerol was one low cost substrate for anaerobic biosynthesis of rhamnolipids by P. aeruginosa. Results help advance the research on anaerobic production of rhamnolipids, deepen the biosynthesis theory of rhamnolipids and optimize the anaerobic production of rhamnolipids.


AMB Express ◽  
2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Beatriz Pérez-Armendáriz ◽  
Carlos Cal-y-Mayor-Luna ◽  
Elie Girgis El-Kassis ◽  
Luis Daniel Ortega-Martínez

Author(s):  
Joselma Ferreira da Silva ◽  
Naiara Priscila Silva Reis Barbosa ◽  
Matheus Tavares do Nascimento França ◽  
Laureen Michelle Houllou ◽  
Carolina Barbosa Malafaia

The development of research for the production of biofuels using low cost substrate has become more relevant in recent years. These include reuse of residues such as crude residual glycerol from biodiesel (CRG) and cheese whey (CW) from the dairy industry. The present work evaluated the ethanol production by isolates of the yeast Kluyveromyces marxianus using agroindustrial residues as an alternative source of carbon. The cultures were rotated 100 rpm at 30 ° C for 24 h. The ethanol production was observed in both media, however, in the CW higher values of ethanol were observed in relation to the CRG. The results showed that K. marxianus isolates were adapted to the use of lactose present in cheese whey as a source of carbon for the production of ethanol with concentrations ranging from 11.41 to 19.9 g.L-1, but did not demonstrate efficiency in the use of crude glycerol for this purpose


RSC Advances ◽  
2014 ◽  
Vol 4 (73) ◽  
pp. 38698-38706 ◽  
Author(s):  
Pranjal Bharali ◽  
Salam Pradeep Singh ◽  
Nippu Dutta ◽  
Shyamalima Gogoi ◽  
L. C. Bora ◽  
...  

Biodiesel plant waste glycerol as low-cost substrate for biosurfactant production.


2020 ◽  
Vol 18 (1) ◽  
pp. 303-313 ◽  
Author(s):  
Aamir Rasheed ◽  
Tahseen Ghous ◽  
Sumaira Mumtaz ◽  
Muhammad Nadeem Zafar ◽  
Kalsoom Akhter ◽  
...  

AbstractIn the present work, a novel continuous flow system (CFS) is developed for the preconcentration and determination of Cr (VI) using Pseudomonas aeruginosa static biomass immobilized onto an effective and low-cost solid support of powdered eggshells. A mini glass column packed with the immobilized biosorbent is incorporated in a CFS for the preconcentration and determination of Cr (VI) from aqueous solutions. The method is based on preconcentration, washing and elution steps followed by colorimetric detection with 1,5-diphenyl carbazide in sulphuric acid. The effects of several variables such as pH, retention time, flow rate, eluent concentration and loaded volume are studied. Under optimal conditions, the CFS method has a linear range between 10 and 100 μg L-1 and a detection limit of 6.25 μg L-1 for the determination of Cr (VI). The sampling frequency is 10 samples per hour with a preconcentration time of 5 mins. Furthermore, after washing with a 0.1 M buffer (pH 3.0), the activity of the biosorbent is regenerated and remained comparable for more than 200 cycles. Scanning electron microscopy reveals a successful immobilization of biomass on eggshells powder and precipitation of Cr (VI) on the bacterial cell surface. The proposed method proves highly sensitive and could be suitable for the determination of Cr (VI) at an ultra-trace level.


2007 ◽  
Vol 121-123 ◽  
pp. 611-614
Author(s):  
Che Hsin Lin ◽  
Jen Taie Shiea ◽  
Yen Lieng Lin

This paper proposes a novel method to on-chip fabricate a none-dead-volume microtip for ESI-MS applications. The microfluidic chip and ESI tip are fabricated in low-cost plastic based materials using a simple and rapid fabrication process. A constant-speed-pulling method is developed to fabricate the ESI tip by pulling mixed PMMA glue using a 30-μm stainless wire through the pre-formed microfluidic channel. The equilibrium of surface tension of PMMA glue will result in a sharp tip after curing. A highly uniform micro-tip can be formed directly at the outlet of the microfluidic channel with minimum dead-volume zone. Detection of caffeine, myoglobin, lysozyme and cytochrome C biosamples confirms the microchip device can be used for high resolution ESI-MS applications.


2020 ◽  
Vol 12 (17) ◽  
pp. 7122
Author(s):  
Ludwika Tomaszewska-Hetman ◽  
Waldemar Rymowicz ◽  
Anita Rywińska

The study proposed the innovative low-cost strategy for erythritol production by Yarrowia lipolytica through developing a simple medium based on industrial waste by-products and a natural method for culture broth purification. Results obtained proved that corn steep liquor might successfully replace traditional sources of nitrogen and other nutrients without compromising activities of the enzymes responsible for erythritol production and its production level. As a consequence, a production process was performed where Y. lipolytica A-6 was able to produce 108.0 g/L of erythritol, with a production rate of 1.04 g/Lh and a yield of 0.45 g/g of the medium containing exclusively 220 g/L of crude glycerol derived from biodiesel production and 40 g/L of corn steep liquor. Moreover, a comparable concentration of erythritol (108.1 g/L) was obtained when a part of crude glycerol was exchanged for the crude fraction of fatty acids in the two-steps process. Next, the collected post-fermentation broths were used in the culture with Y. lipolytica Wratislavia K1 for natural purification. The process resulted in a high increase of erythritol selectivity from 72% to 97% and in the production of 22.0 g/L of biomass with 40.4% protein content, which enables its use as an attractive animal feedstuff.


Sign in / Sign up

Export Citation Format

Share Document