scholarly journals Glycerol or crude glycerol as substrates make Pseudomonas aeruginosa achieve anaerobic production of rhamnolipids

2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Feng Zhao ◽  
Yuting Wu ◽  
Qingzhi Wang ◽  
Mengyao Zheng ◽  
Qingfeng Cui

Abstract Background The anaerobic production of rhamnolipids is significant in research and application, such as foamless fermentation and in situ production of rhamnolipids in the anoxic environments. Although a few studies reported that some rare Pseudomonas aeruginosa strains can produce rhamnolipids anaerobically, the decisive factors for anaerobic production of rhamnolipids were unknown. Results Two possible hypotheses on the decisive factors for anaerobic production of rhamnolipids by P. aeruginosa were proposed, the strains specificity of rare P. aeruginosa (hypothesis 1) and the effect of specific substrates (hypothesis 2). This study assessed the anaerobic growth and rhamnolipids synthesis of three P. aeruginosa strains using different substrates. P. aeruginosa strains anaerobically grew well using all the tested substrates, but glycerol was the only carbon source that supported anaerobic production of rhamnolipids. Other carbon sources with different concentrations still failed for anaerobic production of rhamnolipids by P. aeruginosa. Nitrate was the excellent nitrogen source for anaerobic production of rhamnolipids. FTIR spectra analysis confirmed the anaerobically produced rhamnolipids by P. aeruginosa using glycerol. The anaerobically produced rhamnolipids decreased air-water surface tension to below 29.0 mN/m and emulsified crude oil with EI24 above 65%. Crude glycerol and 1, 2-propylene glycol also supported the anaerobic production of rhamnolipids by all P. aeruginosa strains. Prospects and bottlenecks to anaerobic production of rhamnolipids were also discussed. Conclusions Glycerol substrate was the decisive factor for anaerobic production of rhamnolipids by P. aeruginosa. Strain specificity resulted in the different anaerobic yield of rhamnolipids. Crude glycerol was one low cost substrate for anaerobic biosynthesis of rhamnolipids by P. aeruginosa. Results help advance the research on anaerobic production of rhamnolipids, deepen the biosynthesis theory of rhamnolipids and optimize the anaerobic production of rhamnolipids.

2020 ◽  
Author(s):  
Feng Zhao ◽  
Chao Guo ◽  
Qingfeng Cui

Abstract Background: Rhamnolipids is the most widely studied and applied biosurfactants. The anaerobic biosynthesis of rhamnolipids has important research and practical significance, such as meeting the in situ production of biosurfactant in anoxic environments and the foamless fermentation of biosurfactants. A few studies have reported the anaerobic biosynthesis of rhamnolipids from rare Pseudomonas aeruginosa strains. What did promote the anaerobic biosynthesis of rhamnolipids, the specificity of the rare strains or the effect of specific substrates? Here, anaerobic production of rhamnolipids by different P. aeruginosa strains was investigated using diverse substrates. The anaerobic biosynthesis mechanism of rhamnolipids were also discussed from the substrate point of view.Results: All P. aeruginosa strains anaerobically grew well using the tested substrates. But all P. aeruginosa strains anaerobically produced rhamnolipids only using substrates containing glycerol and nitrate. Fourier transform infrared (FTIR) spectra analysis confirmed the anaerobic production of rhamnolipids from all P. aeruginosa strains. All the anaerobically produced rhamnolipids decreased air-water surface tension from 72.6 mN/m to below 29.0 mN/m and emulsified crude oil with EI24 above 65%. Using crude glycerol as low-cost substrate, all P. aeruginosa strains can anaerobically grow and produce rhamnolipids to reduce the culture surface tension below 35 mN/m. The glycerol metabolic intermediate, 1, 2-propylene glycol, can also achieve the anaerobic production of rhamnolipids by all P. aeruginosa strains.Conclusions: Not the specificity of the rare P. aeruginosa strains but the effect of specific substrates promote the anaerobic biosynthesis of rhamnolipids by P. aeruginosa. Glycerol and nitrate are the excellent substrates for anaerobic production of rhamnolipids from all P. aeruginosa strains. Results indicated that glycerol metabolism involveed the anaerobic biosynthesis of rhamnolipids in P. aeruginosa. Results also showed the feasibility of using crude glycerol as low cost substrate to anaerobically biosynthesize rhamnolipids by P. aeruginosa.


2021 ◽  
Author(s):  
Feng Zhao ◽  
Mengyao Zheng ◽  
Qingfeng Cui

Abstract Background: Rhamnolipids is the most widely studied and applied biosurfactants. The anaerobic biosynthesis of rhamnolipids has important research and practical significance, such as meeting the in situ production of biosurfactant in anoxic environments and the foamless fermentation of biosurfactants. A few studies have reported the anaerobic biosynthesis of rhamnolipids from rare Pseudomonas aeruginosa strains. What did promote the anaerobic biosynthesis of rhamnolipids, the specificity of the rare strains or the effect of specific substrates? Here, anaerobic production of rhamnolipids by different P. aeruginosa strains was investigated using diverse substrates. The anaerobic biosynthesis mechanism of rhamnolipids were also discussed from the substrate point of view.Results: All P. aeruginosa strains anaerobically grew well using the tested substrates. But all P. aeruginosa strains anaerobically produced rhamnolipids only using substrates containing glycerol and nitrate. Fourier transform infrared (FTIR) spectra analysis confirmed the anaerobic production of rhamnolipids from all P. aeruginosa strains. All the anaerobically produced rhamnolipids decreased air-water surface tension from 72.6 mN/m to below 29.0 mN/m and emulsified crude oil with EI24 above 65%. Using crude glycerol as low-cost substrate, all P. aeruginosa strains can anaerobically grow and produce rhamnolipids to reduce the culture surface tension below 35 mN/m. The glycerol metabolic intermediate, 1, 2-propylene glycol, can also achieve the anaerobic production of rhamnolipids by all P. aeruginosa strains.Conclusions: Not the specificity of the rare P. aeruginosa strains but the effect of specific substrates promote the anaerobic biosynthesis of rhamnolipids by P. aeruginosa. Glycerol and nitrate are the excellent substrates for anaerobic production of rhamnolipids from all P. aeruginosa strains. Results indicated that glycerol metabolism involveed the anaerobic biosynthesis of rhamnolipids in P. aeruginosa. Results also showed the feasibility of using crude glycerol as low cost substrate to anaerobically biosynthesize rhamnolipids by P. aeruginosa.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Feng Zhao ◽  
Qingzhi Wang ◽  
Ying Zhang ◽  
Liying Lei

Abstract Background Pseudomonas aeruginosa, the rhamnolipids-producer, is one of dominant bacteria in oil reservoirs. Although P. aeruginosa strains are facultative bacteria, the anaerobic biosynthesis mechanism of rhamnolipids is unclear. Considering the oxygen scarcity within oil reservoirs, revealing the anaerobic biosynthesis mechanism of rhamnolipids are significant for improving the in-situ production of rhamnolipids in oil reservoirs to enhance oil recovery. Results Pseudomonasaeruginosa SG anaerobically produced rhamnolipids using glycerol rather than glucose as carbon sources. Two possible hypotheses on anaerobic biosynthesis of rhamnolipids were proposed, the new anaerobic biosynthetic pathway (hypothesis 1) and the highly anaerobic expression of key genes (hypothesis 2). Knockout strain SGΔrmlB failed to anaerobically produce rhamnolipids using glycerol. Comparative transcriptomics analysis results revealed that glucose inhibited the anaerobic expression of genes rmlBDAC, fabABG, rhlABRI, rhlC and lasI. Using glycerol as carbon source, the anaerobic expression of key genes in P. aeruginosa SG was significantly up-regulated. The anaerobic biosynthetic pathway of rhamnolipids in P. aeruginosa SG were confirmed, involving the gluconeogenesis from glycerol, the biosynthesis of dTDP-l-rhamnose and β-hydroxy fatty acids, and the rhamnosyl transfer process. The engineered strain P. aeruginosa PrhlAB constructed in previous work enhanced 9.67% of oil recovery higher than the wild-type strain P. aeruginosa SG enhancing 8.33% of oil recovery. Conclusion The highly anaerobic expression of key genes enables P. aeruginosa SG to anaerobically biosynthesize rhamnolipids. The genes, rmlBDAC, fabABG, rhlABRI, rhlC and lasI, are key genes for anaerobic biosynthesis of rhamnolipid by P. aeruginosa. Improving the anaerobic production of rhamnolipids better enhanced oil recovery in core flooding test. This study fills the gaps in the anaerobic biosynthesis mechanism of rhamnolipids. Results are significant for the metabolic engineering of P. aeruginosa to enhance anaerobic production of rhamnolipids.


Molecules ◽  
2021 ◽  
Vol 26 (12) ◽  
pp. 3488
Author(s):  
Tomasz Janek ◽  
Eduardo J. Gudiña ◽  
Xymena Połomska ◽  
Piotr Biniarz ◽  
Dominika Jama ◽  
...  

Most biosurfactants are obtained using costly culture media and purification processes, which limits their wider industrial use. Sustainability of their production processes can be achieved, in part, by using cheap substrates found among agricultural and food wastes or byproducts. In the present study, crude glycerol, a raw material obtained from several industrial processes, was evaluated as a potential low-cost carbon source to reduce the costs of surfactin production by Bacillus subtilis #309. The culture medium containing soap-derived waste glycerol led to the best surfactin production, reaching about 2.8 g/L. To the best of our knowledge, this is the first report describing surfactin production by B. subtilis using stearin and soap wastes as carbon sources. A complete chemical characterization of surfactin analogs produced from the different waste glycerol samples was performed by liquid chromatography–mass spectrometry (LC-MS) and Fourier transform infrared spectroscopy (FTIR). Furthermore, the surfactin produced in the study exhibited good stability in a wide range of pH, salinity and temperatures, suggesting its potential for several applications in biotechnology.


2018 ◽  
Vol 15 (4) ◽  
pp. 767-781 ◽  
Author(s):  
Jaciara Araújo ◽  
Juliene Rocha ◽  
Marcos Oliveira Filho ◽  
Stephanie Matias ◽  
Sérgio Oliveira Júnior ◽  
...  

Studies addressing for ecological compatible products have been increased along time, especially, on biosurfactant field. Biosurfactants are extracellular amphiphilic compound that are mainly produced by microorganisms and are classified into five main groups, including the glycolipids one. Rhamnolipids are included in the latter and are anionic biosurfactants produced predominantly by Pseudomonas aeruginosa being classified as mono- and di-rhamnolipids. In addition, their production may occur from different carbon sources, which may be obtained from renewable and low-cost residue. Therefore, it is possible to reduce the rhamnolipids production cost, since this has been the main bottleneck for replacing the chemical surfactants. In addition, to meeting a bona fide industrial application some limitations such as low productivity as well as recovery and/or purification that represent from 60 to 80% of total production cost should be improved. Therefore, this review covers different ways for producing rhamnolipids covering their application in many fields such as pharmaceutical, agricultural, petrochemical and so on; demonstrating the versatility of these biological compounds.


Author(s):  
Jian-Shing Luo ◽  
Hsiu Ting Lee

Abstract Several methods are used to invert samples 180 deg in a dual beam focused ion beam (FIB) system for backside milling by a specific in-situ lift out system or stages. However, most of those methods occupied too much time on FIB systems or requires a specific in-situ lift out system. This paper provides a novel transmission electron microscopy (TEM) sample preparation method to eliminate the curtain effect completely by a combination of backside milling and sample dicing with low cost and less FIB time. The procedures of the TEM pre-thinned sample preparation method using a combination of sample dicing and backside milling are described step by step. From the analysis results, the method has applied successfully to eliminate the curtain effect of dual beam FIB TEM samples for both random and site specific addresses.


2020 ◽  
Vol 21 (14) ◽  
pp. 1539-1550
Author(s):  
Nur S. Ismail ◽  
Suresh K. Subbiah ◽  
Niazlin M. Taib

Background: This is the fastest work in obtaining the metabolic profiles of Pseudomonas aeruginosa in order to combat the infection diseases which leads to high morbidity and mortality rates. Pseudomonas aeruginosa is a high versatility of gram-negative bacteria that can undergo aerobic and anaerobic respiration. Capabilities in deploying different carbon sources, energy metabolism and regulatory system, ensure the survival of this microorganism in the diverse environment condition. Determination of differences in carbon sources utilization among biofilm and non-biofilm of Pseudomonas aeruginosa provides a platform in understanding the metabolic activity of the microorganism. Methods: The study was carried out from September 2017 to February 2019. Four archive isolates forming strong and intermediate biofilm and non-biofilms producer were subcultured from archive isolates. ATCC 27853 P. aeruginosa was used as a negative control or non-biofilm producing microorganism. Biofilm formation was confirmed by Crystal Violet Assay (CVA) and Congo Red Agar (CRA). Metabolic profiles of the biofilm and non-biofilms isolates were determined by phenotype microarrays (Biolog Omnilog). Results and Discussion: In this study, Pseudomonas aeruginosa biofilm isolates utilized uridine, L-threonine and L-serine while non-biofilm utilized adenosine, inosine, monomethyl, sorbic acid and succinamic acid. Conclusion: The outcome of this result will be used for future studies to improve detection or inhibit the growth of P. aeruginosa biofilm and non-biofilm respectively.


2019 ◽  
Author(s):  
Nikki Theofanopoulou ◽  
Katherine Isbister ◽  
Julian Edbrooke-Childs ◽  
Petr Slovák

BACKGROUND A common challenge within psychiatry and prevention science more broadly is the lack of effective, engaging, and scale-able mechanisms to deliver psycho-social interventions for children, especially beyond in-person therapeutic or school-based contexts. Although digital technology has the potential to address these issues, existing research on technology-enabled interventions for families remains limited. OBJECTIVE The aim of this pilot study was to examine the feasibility of in-situ deployments of a low-cost, bespoke prototype, which has been designed to support children’s in-the-moment emotion regulation efforts. This prototype instantiates a novel intervention model that aims to address the existing limitations by delivering the intervention through an interactive object (a ‘smart toy’) sent home with the child, without any prior training necessary for either the child or their carer. This pilot study examined (i) engagement and acceptability of the device in the homes during 1 week deployments; and (ii) qualitative indicators of emotion regulation effects, as reported by parents and children. METHODS In this qualitative study, ten families (altogether 11 children aged 6-10 years) were recruited from three under-privileged communities in the UK. The RA visited participants in their homes to give children the ‘smart toy’ and conduct a semi-structured interview with at least one parent from each family. Children were given the prototype, a discovery book, and a simple digital camera to keep at home for 7-8 days, after which we interviewed each child and their parent about their experience. Thematic analysis guided the identification and organisation of common themes and patterns across the dataset. In addition, the prototypes automatically logged every interaction with the toy throughout the week-long deployments. RESULTS Across all 10 families, parents and children reported that the ‘smart toy’ was incorporated into children’s emotion regulation practices and engaged with naturally in moments children wanted to relax or calm down. Data suggests that children interacted with the toy throughout the duration of the deployment, found the experience enjoyable, and all requested to keep the toy longer. Child emotional connection to the toy—caring for its ‘well-being’—appears to have driven this strong engagement. Parents reported satisfaction with and acceptability of the toy. CONCLUSIONS This is the first known study investigation of the use of object-enabled intervention delivery to support emotion regulation in-situ. The strong engagement and qualitative indications of effects are promising – children were able to use the prototype without any training and incorporated it into their emotion regulation practices during daily challenges. Future work is needed to extend this indicative data with efficacy studies examining the psychological efficacy of the proposed intervention. More broadly, our findings suggest the potential of a technology-enabled shift in how prevention interventions are designed and delivered: empowering children and parents through ‘child-led, situated interventions’, where participants learn through actionable support directly within family life, as opposed to didactic in-person workshops and a subsequent skills application.


Sign in / Sign up

Export Citation Format

Share Document