scholarly journals Optimizing Genomic Selection in Dezhou Donkey Using Low Coverage Whole Genome Sequencing

Author(s):  
Changheng Zhao ◽  
Jun Teng ◽  
Xinhao Zhang ◽  
Dan Wang ◽  
Xinyi Zhang ◽  
...  

Abstract Background Low coverage whole genome sequencing is a low-cost genotyping technology. Combining with genotype imputation approaches, it is likely to become a critical component of cost-efficient genomic selection programs in agricultural livestock. Here, we used the low-coverage sequence data of 617 Dezhou donkeys to investigate the performance of genotype imputation for low coverage whole genome sequence data and genomic selection based on the imputed genotype data. The specific aims were: (i) to measure the accuracy of genotype imputation under different sequencing depths, sample sizes, MAFs, and imputation pipelines; and (ii) to assess the accuracy of genomic selection under different marker densities derived from the imputed sequence data, different strategies for constructing the genomic relationship matrixes, and single- vs multi-trait models. Results We found that a high imputation accuracy (> 0.95) can be achieved for sequence data with sequencing depth as low as 1x and the number of sequenced individuals equal to 400. For genomic selection, the best performance was obtained by using a marker density of 410K and a G matrix constructed using marker dosage information. Multi-trait GBLUP performed better than single-trait GBLUP. Conclusions Our study demonstrates that low coverage whole genome sequencing would be a cost-effective method for genomic selection in Dezhou Donkey.

2018 ◽  
Author(s):  
Yanjun Zan ◽  
Thibaut Payen ◽  
Mette Lillie ◽  
Christa F. Honaker ◽  
Paul B. Siegel ◽  
...  

ABSTRACTBackgroundExperimental intercrosses between outbred founder populations are powerful resources for mapping loci contributing to complex traits (Quantitative Trait Loci or QTL). Here, we present an approach and accompanying software for high-resolution genotype imputation in such populations using whole-genome high coverage sequence data on founder individuals (∼30×) and low coverage sequence data on intercross individuals (∼0.4×). The method is illustrated in a large F2 pedigree between lines of chickens that have been divergently selected for 40 generations for the same trait (body weight at 8 weeks of age).ResultsDescribed is how hundreds of individuals were whole-genome sequenced in a cost- and time-efficient manner using a Tn5-based library preparation protocol optimized for this application. In total, 7.6M markers segregated in this pedigree and 10.0 to 13.7% were informative for imputing the founder line genotypes within the F0-F2 families. The genotypes imputed from low coverage sequence data were consistent with the founder line genotypes estimated using SNP and microsatellite markers both at individual imputed sites (92%) and across the genome of individual chickens (93%). The resolution of the recombination breakpoints was high with 50% being resolved within <10kb.ConclusionsA method for genotype imputation from low-coverage whole-genome sequencing in outbred intercrosses is described and evaluated. By applying it to an outbred chicken F2 cross it is illustrated that it provides high quality, high-resolution genotypes in a time and cost efficient manner.


2022 ◽  
Vol 12 ◽  
Author(s):  
Tianyu Deng ◽  
Pengfei Zhang ◽  
Dorian Garrick ◽  
Huijiang Gao ◽  
Lixian Wang ◽  
...  

Genotype imputation is the term used to describe the process of inferring unobserved genotypes in a sample of individuals. It is a key step prior to a genome-wide association study (GWAS) or genomic prediction. The imputation accuracy will directly influence the results from subsequent analyses. In this simulation-based study, we investigate the accuracy of genotype imputation in relation to some factors characterizing SNP chip or low-coverage whole-genome sequencing (LCWGS) data. The factors included the imputation reference population size, the proportion of target markers /SNP density, the genetic relationship (distance) between the target population and the reference population, and the imputation method. Simulations of genotypes were based on coalescence theory accounting for the demographic history of pigs. A population of simulated founders diverged to produce four separate but related populations of descendants. The genomic data of 20,000 individuals were simulated for a 10-Mb chromosome fragment. Our results showed that the proportion of target markers or SNP density was the most critical factor affecting imputation accuracy under all imputation situations. Compared with Minimac4, Beagle5.1 reproduced higher-accuracy imputed data in most cases, more notably when imputing from the LCWGS data. Compared with SNP chip data, LCWGS provided more accurate genotype imputation. Our findings provided a relatively comprehensive insight into the accuracy of genotype imputation in a realistic population of domestic animals.


Author(s):  
Marta Byrska-Bishop ◽  
Uday S. Evani ◽  
Xuefang Zhao ◽  
Anna O. Basile ◽  
Haley J. Abel ◽  
...  

ABSTRACTThe 1000 Genomes Project (1kGP), launched in 2008, is the largest fully open resource of whole genome sequencing (WGS) data consented for public distribution of raw sequence data without access or use restrictions. The final (phase 3) 2015 release of 1kGP included 2,504 unrelated samples from 26 populations, representing five continental regions of the world and was based on a combination of technologies including low coverage WGS (mean depth 7.4X), high coverage whole exome sequencing (mean depth 65.7X), and microarray genotyping. Here, we present a new, high coverage WGS resource encompassing the original 2,504 1kGP samples, as well as an additional 698 related samples that result in 602 complete trios in the 1kGP cohort. We sequenced this expanded 1kGP cohort of 3,202 samples to a targeted depth of 30X using Illumina NovaSeq 6000 instruments. We performed SNV/INDEL calling against the GRCh38 reference using GATK’s HaplotypeCaller, and generated a comprehensive set of SVs by integrating multiple analytic methods through a sophisticated machine learning model, upgrading the 1kGP dataset to current state-of-the-art standards. Using this strategy, we defined over 111 million SNVs, 14 million INDELs, and ∼170 thousand SVs across the entire cohort of 3,202 samples with estimated false discovery rate (FDR) of 0.3%, 1.0%, and 1.8%, respectively. By comparison to the low-coverage phase 3 callset, we observed substantial improvements in variant discovery and estimated FDR that were facilitated by high coverage re-sequencing and expansion of the cohort. Specifically, we called 7% more SNVs, 59% more INDELs, and 170% more SVs per genome than the phase 3 callset. Moreover, we leveraged the presence of families in the cohort to achieve superior haplotype phasing accuracy and we demonstrate improvements that the high coverage panel brings especially for INDEL imputation. We make all the data generated as part of this project publicly available and we envision this updated version of the 1kGP callset to become the new de facto public resource for the worldwide scientific community working on genomics and genetics.


2019 ◽  
Vol 11 (1) ◽  
Author(s):  
Julian R. Homburger ◽  
Cynthia L. Neben ◽  
Gilad Mishne ◽  
Alicia Y. Zhou ◽  
Sekar Kathiresan ◽  
...  

Abstract Background Inherited susceptibility to common, complex diseases may be caused by rare, pathogenic variants (“monogenic”) or by the cumulative effect of numerous common variants (“polygenic”). Comprehensive genome interpretation should enable assessment for both monogenic and polygenic components of inherited risk. The traditional approach requires two distinct genetic testing technologies—high coverage sequencing of known genes to detect monogenic variants and a genome-wide genotyping array followed by imputation to calculate genome-wide polygenic scores (GPSs). We assessed the feasibility and accuracy of using low coverage whole genome sequencing (lcWGS) as an alternative to genotyping arrays to calculate GPSs. Methods First, we performed downsampling and imputation of WGS data from ten individuals to assess concordance with known genotypes. Second, we assessed the correlation between GPSs for 3 common diseases—coronary artery disease (CAD), breast cancer (BC), and atrial fibrillation (AF)—calculated using lcWGS and genotyping array in 184 samples. Third, we assessed concordance of lcWGS-based genotype calls and GPS calculation in 120 individuals with known genotypes, selected to reflect diverse ancestral backgrounds. Fourth, we assessed the relationship between GPSs calculated using lcWGS and disease phenotypes in a cohort of 11,502 individuals of European ancestry. Results We found imputation accuracy r2 values of greater than 0.90 for all ten samples—including those of African and Ashkenazi Jewish ancestry—with lcWGS data at 0.5×. GPSs calculated using lcWGS and genotyping array followed by imputation in 184 individuals were highly correlated for each of the 3 common diseases (r2 = 0.93–0.97) with similar score distributions. Using lcWGS data from 120 individuals of diverse ancestral backgrounds, we found similar results with respect to imputation accuracy and GPS correlations. Finally, we calculated GPSs for CAD, BC, and AF using lcWGS in 11,502 individuals of European ancestry, confirming odds ratios per standard deviation increment ranging 1.28 to 1.59, consistent with previous studies. Conclusions lcWGS is an alternative technology to genotyping arrays for common genetic variant assessment and GPS calculation. lcWGS provides comparable imputation accuracy while also overcoming the ascertainment bias inherent to variant selection in genotyping array design.


2020 ◽  
Vol 98 (7) ◽  
Author(s):  
Zexi Cai ◽  
Pernille Sarup ◽  
Tage Ostersen ◽  
Bjarne Nielsen ◽  
Merete Fredholm ◽  
...  

Abstract Whole-genome sequencing of 217 animals from three Danish commercial pig breeds (Duroc, Landrace [LL], and Yorkshire [YY]) was performed. Twenty-six million single-nucleotide polymorphisms (SNPs) and 8 million insertions or deletions (indels) were uncovered. Among the SNPs, 493,099 variants were located in coding sequences, and 29,430 were predicted to have a high functional impact such as gain or loss of stop codon. Using the whole-genome sequence dataset as the reference, the imputation accuracy for pigs genotyped with high-density SNP chips was examined. The overall average imputation accuracy for all biallelic variants (SNP and indel) was 0.69, while it was 0.83 for variants with minor allele frequency &gt; 0.1. This study provides whole-genome reference data to impute SNP chip-genotyped animals for further studies to fine map quantitative trait loci as well as improving the prediction accuracy in genomic selection. Signatures of selection were identified both through analyses of fixation and differentiation to reveal selective sweeps that may have had prominent roles during breed development or subsequent divergent selection. However, the fixation indices did not indicate a strong divergence among these three breeds. In LL and YY, the integrated haplotype score identified genomic regions under recent selection. These regions contained genes for olfactory receptors and oxidoreductases. Olfactory receptor genes that might have played a major role in the domestication were previously reported to have been under selection in several species including cattle and swine.


2018 ◽  
Vol 56 (9) ◽  
Author(s):  
Daniel D. Rhoads

ABSTRACT Whole-genome sequencing of bacterial isolates is increasingly being used to predict antibacterial susceptibility and resistance. Mason and coauthors describe the phenotypic susceptibility interpretations of more than 1,300 Staphylococcus aureus isolates tested against a dozen antistaphylococcal agents, and they compared these findings to susceptibility predictions made by analyzing whole-genome sequence data (J Clin Microbiol 56:e01815-17, 2018, https://doi.org/10.1128/JCM.01815-17). The genotype-phenotype susceptibility interpretations correlated in 96.3% (2,720/2,825) of resistant findings and 98.8% (11,504/11,639) of susceptible findings. This work by Mason and colleagues is helping to lower the barriers to using whole-genome sequencing of S. aureus in clinical microbiology practice.


2019 ◽  
Author(s):  
Julian R. Homburger ◽  
Cynthia L. Neben ◽  
Gilad Mishne ◽  
Alicia Y. Zhou ◽  
Sekar Kathiresan ◽  
...  

ABSTRACTBackgroundThe inherited susceptibility of common, complex diseases may be caused by rare, ‘monogenic’ pathogenic variants or by the cumulative effect of numerous common, ‘polygenic’ variants. As such, comprehensive genome interpretation could involve two distinct genetic testing technologies -- high coverage next generation sequencing for known genes to detect pathogenic variants and a genome-wide genotyping array followed by imputation to calculate genome-wide polygenic scores (GPSs). Here we assessed the feasibility and accuracy of using low coverage whole genome sequencing (lcWGS) as an alternative to genotyping arrays to calculate GPSs.MethodsFirst, we performed downsampling and imputation of WGS data from ten individuals to assess concordance with known genotypes. Second, we assessed the correlation between GPSs for three common diseases -- coronary artery disease (CAD), breast cancer (BC), and atrial fibrillation (AF) -- calculated using lcWGS and genotyping array in 184 samples. Third, we assessed concordance of lcWGS-based genotype calls and GPS calculation in 120 individuals with known genotypes, selected to reflect diverse ancestral backgrounds. Fourth, we assessed the relationship between GPSs calculated using lcWGS and disease phenotypes in 11,502 European individuals seeking genetic testing.ResultsWe found imputation accuracy r2 values of greater than 0.90 for all ten samples -- including those of African and Ashkenazi Jewish ancestry -- with lcWGS data at 0.5X. GPSs calculated using both lcWGS and genotyping array followed by imputation in 184 individuals were highly correlated for each of the three common diseases (r2 = 0.93 - 0.97) with similar score distributions. Using lcWGS data from 120 individuals of diverse ancestral backgrounds, including South Asian, East Asian, and Hispanic individuals, we found similar results with respect to imputation accuracy and GPS correlations. Finally, we calculated GPSs for CAD, BC, and AF using lcWGS in 11,502 European individuals, confirming odds ratios per standard deviation increment in GPSs ranging 1.28 to 1.59, consistent with previous studies.ConclusionsHere we show that lcWGS is an alternative approach to genotyping arrays for common genetic variant assessment and GPS calculation. lcWGS provides comparable imputation accuracy while also overcoming the ascertainment bias inherent to variant selection in genotyping array design.


2019 ◽  
Author(s):  
Ruifei Yang ◽  
Xiaoli Guo ◽  
Di Zhu ◽  
Cheng Bian ◽  
Yiqiang Zhao ◽  
...  

AbstractHigh-density markers discovered in large size samples are essential for mapping complex traits at the gene-level resolution for agricultural livestock and crops. However, the unavailability of large reference panels and array designs for a target population of agricultural species limits the improvement of array-based genotype imputation. Recent studies showed very low coverage sequencing (LCS) of a large number of individuals is a cost-effective approach to discover variations in much greater detail in association studies. Here, we performed cohort-wide whole-genome sequencing at an average depth of 0.73× and identified more than 11.3 M SNPs. We also evaluated the data set and performed genome-wide association analysis (GWAS) in 2885 Duroc boars. We compared two different pipelines and selected a proper method (BaseVar/STITCH) for LCS analyses and determined that sequencing of 1000 individuals with 0.2× depth is enough for identifying SNPs with high accuracy in this population. Of the seven association signals derived from the genome-wide association analysis of the LCS variants, which were associated with four economic traits, we found two QTLs with narrow intervals were possibly responsible for the teat number and back fat thickness traits and identified 7 missense variants in a single sequencing step. This strategy (BaseVar/STITCH) is generally applicable to any populations and any species which have no suitable reference panels. These findings show that the LCS strategy is a proper approach for the construction of new genetic resources to facilitate genome-wide association studies, fine mapping of QTLs, and genomic selection, and implicate that it can be widely used for agricultural animal breeding in the future.


2021 ◽  
Author(s):  
Marco Toffoli ◽  
Xiao Chen ◽  
Fritz J Sedlazeck ◽  
Chiao-Yin Lee ◽  
Stephen Mullin ◽  
...  

GBA variants cause the autosomal recessive Gaucher disease, and carriers are at increased risk of Parkinson disease (PD) and Lewy body dementia (LBD). The presence of a highly homologous nearby pseudogene (GBAP1) predisposes to a range of structural variants arising from either gene conversion or reciprocal recombination, the latter resulting in copy number gains or losses, complicating genetic testing and analysis. To date, short-read sequencing has not been able to fully resolve these or other variants in the key homology region, and targeted long-read sequencing has not previously resolved reciprocal recombinants. We present and validate two independent methods to resolve recombinant alleles and other variants in GBA: Gauchian, a novel bioinformatics tool for short-read, whole-genome sequencing data analysis, and Oxford Nanopore long-read sequencing after enrichment with appropriate PCR. The methods were concordant for 42 samples including 30 with a range of recombinants and GBAP1-related mutations, and Gauchian outperforms the GATK Best Practices pipeline. Applying Gauchian to Illumina sequencing of over 10,000 individuals from publicly available cohorts shows that copy number variants (CNVs) spanning GBAP1 are relatively common in Africans. CNV frequencies in PD and LBD are similar to controls, but gains may coexist with other mutations in patients, and a modifying effect cannot be excluded. Gauchian detects a higher frequency of GBA variants in LBD than PD, especially severe ones. These findings highlight the importance of accurate GBA mutation detection in these patients, which is possible by either Gauchian analysis of short-read whole genome sequencing, or targeted long-read sequencing.


2020 ◽  
Vol 98 (Supplement_4) ◽  
pp. 81-82
Author(s):  
Joaquim Casellas ◽  
Melani Martín de Hijas-Villalba ◽  
Marta Vázquez-Gómez ◽  
Samir Id Lahoucine

Abstract Current European regulations for autochthonous livestock breeds put a special emphasis on pedigree completeness, which requires laboratory paternity testing by genetic markers in most cases. This entails significant economic expenditure for breed societies and precludes other investments in breeding programs, such as genomic evaluation. Within this context, we developed paternity testing through low-coverage whole-genome data in order to reuse these data for genomic evaluation at no cost. Simulations relied on diploid genomes composed by 30 chromosomes (100 cM each) with 3,000,000 SNP per chromosome. Each population evolved during 1,000 non-overlapping generations with effective size 100, mutation rate 10–4, and recombination by Kosambi’s function. Only those populations with 1,000,000 ± 10% polymorphic SNP per chromosome in generation 1,000 were retained for further analyses, and expanded to the required number of parents and offspring. Individuals were sequenced at 0.01, 0.05, 0.1, 0.5 and 1X depth, with 100, 500, 1,000 or 10,000 base-pair reads and by assuming a random sequencing error rate per SNP between 10–2 and 10–5. Assuming known allele frequencies in the population and sequencing error rate, 0.05X depth sufficed to corroborate the true father (85,0%) and to discard other candidates (96,3%). Those percentages increased up to 99,6% and 99,9% with 0,1X depth, respectively (read length = 10,000 bp; smaller read lengths slightly improved the results because they increase the number of sequenced SNP). Results were highly sensitive to biases in allele frequencies and robust to inaccuracies regarding sequencing error rate. Low-coverage whole-genome sequencing data could be subsequently integrated into genomic BLUP equations by appropriately constructing the genomic relationship matrix. This approach increased the correlation between simulated and predicted breeding values by 1.21% (h2 = 0.25; 100 parents and 900 offspring; 0.1X depth by 10,000 bp reads). Although small, this increase opens the door to genomic evaluation in local livestock breeds.


Sign in / Sign up

Export Citation Format

Share Document