scholarly journals Research on PDMA communication system based on Complete Complementary Sequence

2020 ◽  
Author(s):  
Shufeng Li ◽  
Baoxin Su ◽  
Libiao Jin

Abstract Pattern division multiple access (PDMA) is a new non-orthogonal multiple access (NOMA) technology. It is proposed to meet the challenge of 5G large-scale connectivity and high-frequency spectral efficiency. Compared with traditional orthogonal multiple access (OMA), PDMA can support more users through the allocation of non-orthogonal resources. Due to perfect aperiodic correlation, complete complementary sequence (CCS) greatly improves the spectrum efficiency of the system. It has been widely used in wireless communication and radar sensing, and it still has research value in 5G. In order to apply the advantages of CCS to NOMA communication system, this paper proposes a system model of CCS spread spectrum coding based on PDMA. CCS is used as spread spectrum code to improve the performance of PDMA communication system. At the same time, on the basis of spread spectrum technology, this paper analyzes the average power allocation algorithm and water-filling power allocation algorithm, and a dynamic power allocation algorithm based on the transmission rate and practical application is proposed. The simulation results show that the system model can effectively improve the performance of the system.

Author(s):  
Shufeng Li ◽  
Baoxin Su ◽  
Libiao Jin

Abstract Pattern division multiple access (PDMA) is a new non-orthogonal multiple access (NOMA) technology. It is proposed to meet the challenge of 5G large-scale connectivity and high-frequency spectral efficiency. Compared with traditional orthogonal multiple access (OMA), PDMA can support more users through the allocation of non-orthogonal resources. Due to perfect aperiodic correlation, complete complementary sequence (CCS) greatly improves the spectrum efficiency of the system. It has been widely used in wireless communication and radar sensing, and it still has research value in 5G. In order to apply the advantages of CCS to NOMA communication system, this paper proposes a system model of CCS spread spectrum coding based on PDMA. CCS is used as spread spectrum code to improve the performance of PDMA communication system. At the same time, on the basis of spread spectrum technology, this paper analyzes the average power allocation algorithm and water-filling power allocation algorithm, and a dynamic power allocation algorithm based on the transmission rate and practical application is proposed. The simulation results show that the system model can effectively improve the performance of the system.


2020 ◽  
Author(s):  
Shufeng Li ◽  
Baoxin Su ◽  
Libiao Jin

Abstract Pattern division multiple access (PDMA) is a new non-orthogonal multiple access (NOMA) technology. It is proposed to meet the challenge of 5G large-scale connectivity and high-frequency spectral efficiency. Compared with traditional orthogonal multiple access (OMA), PDMA can support more users through the allocation of non-orthogonal resources. Due to perfect aperiodic correlation, complete complementary sequences (CCS) still has research value in 5G. In order to apply the advantages of CCS to NOMA communication system, this paper proposes a system model of CCS spread spectrum coding based on PDMA. CCS is used as spread spectrum code to improve the performance of PDMA communication system. At the same time, on the basis of spread spectrum technology, this paper analyzes the average power allocation algorithm and water-filling power allocation algorithm, and a dynamic power allocation algorithm based on the transmission rate and practical application is proposed. The simulation results show that the system model can effectively improve the performance of the system.


2021 ◽  
Vol 11 (2) ◽  
pp. 716
Author(s):  
Ruibiao Chen ◽  
Fangxing Shu ◽  
Kai Lei ◽  
Jianping Wang ◽  
Liangjie Zhang

Non-orthogonal multiple access (NOMA) has been considered a promising technique for the fifth generation (5G) mobile communication networks because of its high spectrum efficiency. In NOMA, by using successive interference cancellation (SIC) techniques at the receivers, multiple users with different channel gain can be multiplexed together in the same subchannel for concurrent transmission in the same spectrum. The simultaneously multiple transmission achieves high system throughput in NOMA. However, it also leads to more energy consumption, limiting its application in many energy-constrained scenarios. As a result, the enhancement of energy efficiency becomes a critical issue in NOMA systems. This paper focuses on efficient user clustering strategy and power allocation design of downlink NOMA systems. The energy efficiency maximization of downlink NOMA systems is formulated as an NP-hard optimization problem under maximum transmission power, minimum data transmission rate requirement, and SIC requirement. For the approximate solution with much lower complexity, we first exploit a quick suboptimal clustering method to assign each user to a subchannel. Given the user clustering result, the optimal power allocation problem is solved in two steps. By employing the Lagrangian multiplier method with Karush–Kuhn–Tucker optimality conditions, the optimal power allocation is calculated for each subchannel. In addition, then, an inter-cluster dynamic programming model is further developed to achieve the overall maximum energy efficiency. The theoretical analysis and simulations show that the proposed schemes achieve a significant energy efficiency gain compared with existing methods.


2021 ◽  
Vol 40 (5) ◽  
pp. 9007-9019
Author(s):  
Jyotirmayee Subudhi ◽  
P. Indumathi

Non-Orthogonal Multiple Access (NOMA) provides a positive solution for multiple access issues and meets the criteria of fifth-generation (5G) networks by improving service quality that includes vast convergence and energy efficiency. The problem is formulated for maximizing the sum rate of MIMO-NOMA by assigning power to multiple layers of users. In order to overcome these problems, two distinct evolutionary algorithms are applied. In particular, the recently implemented Salp Swarm Algorithm (SSA) and the prominent Optimization of Particle Swarm (PSO) are utilized in this process. The MIMO-NOMA model optimizes the power allocation by layered transmission using the proposed Joint User Clustering and Salp Particle Swarm Optimization (PPSO) power allocation algorithm. Also, the closed-form expression is extracted from the current Channel State Information (CSI) on the transmitter side for the achievable sum rate. The efficiency of the proposed optimal power allocation algorithm is evaluated by the spectral efficiency, achievable rate, and energy efficiency of 120.8134bits/s/Hz, 98Mbps, and 22.35bits/Joule/Hz respectively. Numerical results have shown that the proposed PSO algorithm has improved performance than the state of art techniques in optimization. The outcomes on the numeric values indicate that the proposed PSO algorithm is capable of accurately improving the initial random solutions and converging to the optimum.


2014 ◽  
Vol 543-547 ◽  
pp. 2323-2328
Author(s):  
Fan Xin Zeng ◽  
Zhen Yu Zhang ◽  
Lin Jie Qian

For suppressing multiple access interference (MAI) in a CDMA communication system, complementary sequence sets are employed as spreading sequences in such system. In this paper, we present a method for constructing a family of quaternary periodic complementary sequence sets, which arises from the conversion of the existing binary periodic complementary sequence sets with odd period of sub-sequences. The period of sub-sequences in the proposed sequence sets is twice as long as the one of the binary sequence sets employed, which is a drawback in the proposed method. Finally, some examples are given in order to illuminate the validity of the new method.


2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Tao Hong ◽  
Geng-xin Zhang

The research of improving the secrecy capacity (SC) of wireless communication system using artificial noise (AN) is one of the classic models in the field of physical layer security communication. In this paper, we consider the peak-to-average power ratio (PAPR) problem in this AN-aided model. A power allocation algorithm for AN subspaces is proposed to solve the nonconvex optimization problem of PAPR. This algorithm utilizes a series of convex optimization problems to relax the nonconvex optimization problem in a convex way based on fractional programming, difference of convex (DC) functions programming, and nonconvex quadratic equality constraint relaxation. Furthermore, we also derive the SC of the proposed signal under the condition of the AN-aided model with a finite alphabet and the nonlinear high-power amplifiers (HPAs). Simulation results show that the proposed algorithm reduces the PAPR value of transmit signal to improve the efficiency of HPA compared with benchmark AN-aided secure communication signals in the multiple-input single-output (MISO) model.


2013 ◽  
Vol 756-759 ◽  
pp. 2401-2405 ◽  
Author(s):  
Yun Hang Zhu ◽  
Qiong Cai ◽  
Xiu Liang Huang

It has become a hot research topic that to improve the coordination performance of multi-robotic system by communication. With rapid development of wireless communication and robot technologies, multi-robotic system based on spread-spectrum technology has become product of combining two technologies. Code Division Multiple Access (CDMA) technology is applied in multi-robotic communication system here. According to the modified m-Walsh sequence got by the way of analyzing the relation characteristic of Walsh-code and m-sequence, the best direct sequence spread spectrum (DSSS) PN code and the improved RAKE receiver scheme are proposed, which satisfied the requirements of real-time performance, reliability and confidentiality in multi-robotic communication system, and have great significance for the research of multi-robotic communication system.


Sign in / Sign up

Export Citation Format

Share Document