scholarly journals Contamination Level, Source Identification and Health Risk Assessment of Potentially Toxic Elements in Drinking Water Sources of Mining and Non-mining Areas of Khyber Pakhtunkhwa, Pakistan

Author(s):  
Zahid Imran Bhatti ◽  
Muhammad Ishtiaq ◽  
Said Akbbar Khan ◽  
javed nawab ◽  
Sardar Khan ◽  
...  

Abstract Accelerated mining activities have increased water contamination with potentially toxic elements (PTEs) and their associated human health risk in developing countries. The current study investigated the distribution of PTEs, their potential sources and health risk assessment in both ground and surface water sources in mining and non–mining areas of Khyber Pakhtunkhwa, Pakistan. Water samples (n=150) were taken from selected sites and were analyzed for six PTEs (Ni, Cr, Zn, Cu, Pb and Mn). Among PTEs, Cr showed high mean concentration (497) μg L–1, followed by Zn (414) μg L–1 in mining area, while Zn showed lowest mean value (4.44) μg L–1 in non-mining areas. Elevated concentrations of Ni, Cr and moderate level of Pb in ground and surface water of Mohmand District exceeded the permissible limits set by WHO (2017). Multivariate statistical analyses showed that pollution sources of PTEs were mainly from mafic-ultramafic rocks, acid mine drainage, open dumping of mine-wastes and mine tailings. The hazard quotient (HQ) was highest for children relatively to adults, but not higher than the US-EPA limits. The hazard index (HI) for ingestions of all selected PTEs were lower than the threshold value (HIing <1), except Mohmand District which showed (HI >1) in mining areas through ingestion. Moreover, the carcinogenic risk (CR) values exceeded the threshold limits for Ni and Cr set by the US-EPA (1.0E−04 to 1.0E−06). In order to protect the drinking water sources of the study areas from more contamination, the management techniques and policy for mining operations need to be implemented.

2021 ◽  
Author(s):  
Zahid Bhatti ◽  
Muhammad Ishtiaq ◽  
Said Khan ◽  
javed nawab ◽  
Sardar Khan ◽  
...  

Abstract Accelerated mining activities have increased water contamination with potentially toxic elements (PTEs) and their associated human health risk in developing countries. The current study investigated the distribution of PTEs, their potential sources and health risk assessment in both ground and surface water sources in mining and non–mining areas of Khyber Pakhtunkhwa, Pakistan. Water samples (n=150) were taken from selected sites and were analyzed for six PTEs (Ni, Cr, Zn, Cu, Pb and Mn). Among PTEs, Cr showed high mean concentration (497) μg L–1, followed by Zn (414) μg L–1 in mining area, while Zn showed lowest mean value (4.44) μg L–1 in non-mining areas. Elevated concentrations of Ni, Cr and moderate level of Pb in ground and surface water of Mohmand District exceeded the permissible limits set by WHO (2017). Multivariate statistical analyses showed that pollution sources of PTEs were mainly from mafic-ultramafic rocks, acid mine drainage, open dumping of mine-wastes and mine tailings. The hazard quotient (HQ) was highest for children relatively to adults, but not higher than the US-EPA limits. The hazard index (HI) for ingestions of all selected PTEs were lower than the threshold value (HIing <1), except Mohmand District which showed (HI >1) in mining areas through ingestion. Moreover, the carcinogenic risk (CR) values exceeded the threshold limits for Ni and Cr set by the US-EPA (1.0E−04 to 1.0E−06). In order to protect the drinking water sources of the study areas from more contamination, the management techniques and policy for mining operations need to be implemented.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Ying-ju Li ◽  
Zhi-kang Wang ◽  
Fan-xin Qin ◽  
Zhi-qing Fang ◽  
Xin-li Li ◽  
...  

The health risk of potentially toxic elements (PTEs) via contamination of the food chain has attracted widespread concern. The aim of this study is to evaluate the effects of PTEs in environment and human body (fingernail, hair, and blood) of people living in agricultural soil near arsenic coal mining areas in Xingren County (Guizhou, southwest China). 89 crop samples which included vegetables, rice, maize, and coix seed and their corresponding soils and 17 local surface water and biological tissue samples (41 × 3) in near arsenic coal mining areas were collected, and the concentrations of potentially toxic elements (As, Cd, Cu, Cr, and Pb) in all the samples were determined. The health risk assessment methods developed by the United States Environmental Protection Agency were employed to explore the potential health hazards of PTEs in soils growing crops. Results showed that 4 toxic elements, Cd, Cu, As, and Cr, were found to have different degrees of contamination in soils in the studied area. The total concentration of toxic elements (As, Cr, Cu, and Pb) in fingernail, hair, and blood samples were 90.50, 69.31, and 6.90 mg·kg−1, respectively. Fingernail samples from females were more likely to show exposure to trace metals compared to males. As the age of the subject increased, the concentration of As also increased in all three biological samples. The risk assessment for the mean hazard index value from the consumption of local food crops was 14.81, indicating that consumers may experience adverse, noncarcinogenic health effects. The estimated mean total cancer risk value of was 5.3 × 10−3, which was approximately 10 to 1000 times higher than the acceptable range of 10−6–10−4, indicating serious carcinogenic risks for local people consuming crops from the area. This study provides evidence that local residents in this study area may be at a high risk of disease caused from toxic element exposure.


Water ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 613
Author(s):  
Samantha Jiménez-Oyola ◽  
Kenny Escobar Segovia ◽  
María-Jesús García-Martínez ◽  
Marcelo Ortega ◽  
David Bolonio ◽  
...  

Anthropogenic activities performed in the Ecuadorian Amazon have released potentially toxic elements (PTEs) into the rivers, causing severe environmental pollution and increasing the risk of exposure to the residents of the surrounding areas. This study aims to carry out a human health risk assessment using deterministic and probabilistic methods to estimate the hazard index (HI) and total cancer risk (TCR) related to multi-pathway human exposure to PTEs in polluted rivers. Concentrations of Al, Cd, Cr, Cu, Hg, Ni, Pb, and Zn in surface water and sediment samples from rivers on the Ecuadorian Amazon were considered to assess the potential adverse human health effects. As a result, deterministic and probabilistic estimations of cancer and non-cancer risk through exposure to surface waters and sediments were above the safety limit. A sensitivity analysis identified the concentration of PTEs and the exposure duration (ED) as the two most important variables for probabilistic health risk assessment. The highest risk for receptors was related to exposure to polluted sediments through incidental ingestion and dermal contact routes. According to the deterministic estimation, the human health risk through ingestion of water was above the threshold in specific locations. This study reveals the potential health risk to which the population is exposed. This information can be used as a baseline to develop public strategies to reduce anthropogenic pollution and exposure to PTEs in Ecuadorian Amazon rivers.


Sign in / Sign up

Export Citation Format

Share Document