scholarly journals Hierarchical network enabled flexible textile pressure sensor with ultra-broad response range and high-temperature resistance

Author(s):  
Meiling Jia ◽  
Chenghan Yi ◽  
Yankun Han ◽  
Xin Li ◽  
Guoliang Xu ◽  
...  

Abstract Thin, lightweight, and flexible textile pressure sensors with the ability to detect the full range of faint pressure (<100 Pa), low pressure (in the range of KPa) and high pressure (in the range of MPa) are in significant demand to meet the requirements for applications in daily activities and more meaningfully in some harsh environments, such as high temperature and high pressure. However, it is still a significant challenge to fulfill these requirements simultaneously in a single pressure sensor. Herein, a high-performance pressure sensor enabled by polyimide fiber fabric with functionalized carbon-nanotube (PI/FCNT) is obtained via a facile electrophoretic deposition (EPD) approach. High-density FCNT is evenly wrapped and chemically bonded to the fiber surface during the EPD process, forming a conductive hierarchical fiber/FCNT matrix. Benefiting from the large compressible region of PI fiber fabric, abundant yet firm contacting points, point-to-point contacting mode, and high elastic modulus of both PI and CNT, the proposed PI/FCNT pressure sensor can be customized and modulated to achieve both a wide linear ranges, ultra-broad sensing range, long-term stability and high-temperature resistance. Thanks to these merits, the proposed PI/FCNT(EPD) pressure sensor could monitor the human physiological information, detect tiny and extremely high pressure, can be integrated into an intelligent mechanical hand to detect the contact force under high-temperature (>300 ºC), endowing it with high applicability in the fields of real-time health monitoring, intelligent robots, and harsh environments.

2021 ◽  
Author(s):  
Meiling Jia ◽  
Chenghan Yi ◽  
Yankun Han ◽  
Xin Li ◽  
Guoliang Xu ◽  
...  

Abstract Thin, lightweight, and flexible textile pressure sensors with the ability to precisely detect the full range of faint pressure (< 100 Pa), low pressure (in the range of KPa) and high pressure (in the range of MPa) are in significant demand to meet the requirements for applications in daily activities and more meaningfully in some harsh environments, such as high temperature and high pressure. However, it is still a major challenge to fulfill these requirements simultaneously in a single pressure sensor. Herein, a high-performance pressure sensor enabled by polyimide fiber fabric with functionalized carbon-nanotube (PI/FCNT) is obtained via a facile electrophoretic deposition (EPD) approach. High-density FCNT is evenly wrapped and chemically bonded to the fiber surface during the EPD process, forming a conductive hierarchical fiber/FCNT matrix. Benefiting from the abundant yet firm contacting points, point-to-point contacting mode, and high elastic modulus of both PI and CNT, the proposed PI/FCNT pressure sensor exhibits ultra-high sensitivity (3.57 MPa− 1), ultra-wide linearity (3.24 MPa), exceptionally broad sensing range (~ 45 MPa), and long-term stability (> 4000 cycles). Furthermore, under a high working temperature of 200 ºC, the proposed sensor device still shows an ultra-high sensitivity of 2.64 MPa− 1 within a wide linear range of 7.2 MPa, attributing to its intrinsic high-temperature-resistant properties of PI and CNT. Thanks to these merits, the proposed PI/FCNT(EPD) pressure sensor could serve as an E-skin device to monitor the human physiological information, precisely detect tiny and extremely high pressure, and can be integrated into an intelligent mechanical hand to detect the contact force under high-temperature (> 300 ºC), endowing it with high applicability in the fields of real-time health monitoring, intelligent robots, and harsh environments.


Micromachines ◽  
2017 ◽  
Vol 9 (1) ◽  
pp. 5 ◽  
Author(s):  
Guo-Dong Zhang ◽  
Yu-Long Zhao ◽  
Yun Zhao ◽  
Xin-Chen Wang ◽  
Xue-Yong Wei

Sensors ◽  
2018 ◽  
Vol 18 (8) ◽  
pp. 2676
Author(s):  
Chen Li ◽  
Boshan Sun ◽  
Yanan Xue ◽  
Jijun Xiong

Alumina ceramic is a highly promising material for fabricating high-temperature pressure sensors. In this paper, a direct bonding method for fabricating a sensitive cavity with alumina ceramic is presented. Alumina ceramic substrates were bonded together to form a sensitive cavity for high-temperature pressure environments. The device can sense pressure parameters at high temperatures. To verify the sensitivity performance of the fabrication method in high-temperature environments, an inductor and capacitor were integrated on the ceramic substrate with the fabricated sensitive cavity to form a wireless passive LC pressure sensor with thick-film integrated technology. Finally, the fabricated sensor was tested using a system test platform. The experimental results show that the sensor can realize pressure measurements above 900 °C, confirming that the fabricated sensitive cavity has excellent sealing properties. Therefore, the direct bonding method can potentially be used for developing all-ceramic high-temperature pressure sensors for application in harsh environments.


2017 ◽  
Vol 84 (s1) ◽  
Author(s):  
Linbo Tang ◽  
Felix Rosenburg ◽  
Norbert Nicoloso ◽  
Roland Werthschützky

AbstractPolymer-derived ceramics with piezoresistive properties consist of siliconoxycarbide nanocomposites (SiOC/C). In contrast to commercial (piezo-) resistive materials, SiCO/C nanocomposites have high pressure sensitivity and a high temperature resistance over 400°C. Because of its ceramic properties, SiOC/C can be modeled as a volume body and therefore does not require any additional spring elements. By varying the volume percent of the segregated carbon x


Sensors ◽  
2020 ◽  
Vol 20 (16) ◽  
pp. 4419
Author(s):  
Ting Li ◽  
Haiping Shang ◽  
Weibing Wang

A pressure sensor in the range of 0–120 MPa with a square diaphragm was designed and fabricated, which was isolated by the oil-filled package. The nonlinearity of the device without circuit compensation is better than 0.4%, and the accuracy is 0.43%. This sensor model was simulated by ANSYS software. Based on this model, we simulated the output voltage and nonlinearity when piezoresistors locations change. The simulation results showed that as the stress of the longitudinal resistor (RL) was increased compared to the transverse resistor (RT), the nonlinear error of the pressure sensor would first decrease to about 0 and then increase. The theoretical calculation and mathematical fitting were given to this phenomenon. Based on this discovery, a method for optimizing the nonlinearity of high-pressure sensors while ensuring the maximum sensitivity was proposed. In the simulation, the output of the optimized model had a significant improvement over the original model, and the nonlinear error significantly decreased from 0.106% to 0.0000713%.


2013 ◽  
Vol 651 ◽  
pp. 198-203
Author(s):  
Xiu Ling Wang ◽  
Li Ying Yang ◽  
Shou Ren Wang

It is significant and necessary to carry out the research and development of self-lubricating bearing. The current study of metal matrix self-lubricating bearing materials is summarized. A new type of high temperature self-lubricating Ti-Al alloy bearing materials is proposed. It is light, anti-friction, anti-corrosion and high temperature resistance (600 °C). The future trend is introduced in the end of this paper.


Sign in / Sign up

Export Citation Format

Share Document