scholarly journals Cooperative Ankle-Exoskeleton Control Can Reduce Effort to Recover Balance After Unexpected Disturbances During Walking

Author(s):  
Cristina Bayón ◽  
Arvid Q.L. Keemink ◽  
Michelle van Mierlo ◽  
Wolfgang Rampeltshammer ◽  
Herman van der Kooij ◽  
...  

Abstract BackgroundIn the last two decades, lower-limb exoskeletons have been developed to assist human standing and locomotion. One of the ongoing challenges is the cooperation between the exoskeleton balance support and the wearer control. Here we present a cooperative ankle-exoskeleton control strategy to assist in balance recovery after unexpected disturbances during walking, which is inspired on human balance responses.MethodsWe evaluated the novel controller in ten able-bodied participants wearing the ankle modules of the Symbitron exoskeleton. During walking, participants received unexpected forward pushes with different timing and magnitude at the pelvis level, while being supported or not by the robotic assistance provided by the controller.ResultsThe results show that the controller was able to reduce participants’ effort while keeping similar ability to counteract and withstand the balance disturbances (average reduction of 10.09% in soleus activity, 5.20% in gastrocnemius medialis activity and 6.67% in gastrocnemius lateralis activity for the stance leg).ConclusionThe proposed controller was able to cooperate with the able-bodied participants in counteracting perturbations, contributing to the state-of-the-art of bio-inspired cooperative ankle exoskeleton controllers for supporting dynamic balance. In the future, this control strategy may be used in exoskeletons to support and improve balance control in users with motor disabilities.

2020 ◽  
Vol 142 (12) ◽  
Author(s):  
Nicole G. Harper ◽  
Jason M. Wilken ◽  
Richard R. Neptune

Abstract Dynamic balance is controlled by lower-limb muscles and is more difficult to maintain during stair ascent compared to level walking. As a result, individuals with lower-limb amputations often have difficulty ascending stairs and are more susceptible to falls. The purpose of this study was to identify the biomechanical mechanisms used by individuals with and without amputation to control dynamic balance during stair ascent. Three-dimensional muscle-actuated forward dynamics simulations of amputee and nonamputee stair ascent were developed and contributions of individual muscles, the passive prosthesis, and gravity to the time rate of change of angular momentum were determined. The prosthesis replicated the role of nonamputee plantarflexors in the sagittal plane by contributing to forward angular momentum. The prosthesis largely replicated the role of nonamputee plantarflexors in the transverse plane but resulted in a greater change of angular momentum. In the frontal plane, the prosthesis and nonamputee plantarflexors contributed oppositely during the first half of stance while during the second half of stance, the prosthesis contributed to a much smaller extent. This resulted in altered contributions from the intact leg plantarflexors, vastii and hamstrings, and the intact and residual leg hip abductors. Therefore, prosthetic devices with altered contributions to frontal-plane angular momentum could improve balance control during amputee stair ascent and minimize necessary muscle compensations. In addition, targeted training could improve the force production magnitude and timing of muscles that regulate angular momentum to improve balance control.


2021 ◽  
Vol 15 ◽  
Author(s):  
Fashu Xu ◽  
Jing Qiu ◽  
Wenbo Yuan ◽  
Hong Cheng

The lower limb exoskeleton is playing an increasing role in enabling individuals with spinal cord injury (SCI) to stand upright, walk, turn, and so on. Hence, it is essential to maintain the balance of the human-exoskeleton system during movements. However, the balance of the human-exoskeleton system is challenging to maintain. There are no effective balance control strategies because most of them can only be used in a specific movement like walking or standing. Hence, the primary aim of the current study is to propose a balance control strategy to improve the balance of the human-exoskeleton system in dynamic movements. This study proposes a new safety index named Enhanced Stability Pyramid Index (ESPI), and a new balance control strategy is based on the ESPI and the Dynamic Movement Primitives (DMPs). To incorporate dynamic information of the system, the ESPI employs eXtrapolated Center of Mass (XCoM) instead of the center of mass (CoM). Meanwhile, Time-to-Contact (TTC), the urgency of safety, is used as an automatic weight assignment factor of ESPI instead of the traditional manual one. Then, the balance control strategy utilizing DMPs to generate the gait trajectory according to the scalar and vector values of the ESPI is proposed. Finally, the walking simulation in Gazebo and the experiments of the human-exoskeleton system verify the effectiveness of the index and balance control strategy.


2019 ◽  
Vol 1 ◽  
Author(s):  
Steffen Ringhof ◽  
Isabel Patzer ◽  
Jonas Beil ◽  
Tamim Asfour ◽  
Thorsten Stein

2014 ◽  
Vol 945-949 ◽  
pp. 777-780
Author(s):  
Tao Liu ◽  
Yong Xu ◽  
Bo Yuan Mao

Firstly, according to the structure characteristics of precision centrifuge, the mathematical model of its dynamic balancing system was set up, and the dynamic balancing scheme of double test surfaces, double emendation surfaces were established. Then the dynamic balance system controller of precision centrifuge was designed. Simulation results show that the controller designed can completely meet the requirements of precision centrifuge dynamic balance control system.


2020 ◽  
Vol 11 (1) ◽  
pp. 353
Author(s):  
Thomas Flayols ◽  
Andrea Del Prete ◽  
Majid Khadiv ◽  
Nicolas Mansard ◽  
Ludovic Righetti

Contacts between robots and environment are often assumed to be rigid for control purposes. This assumption can lead to poor performance when contacts are soft and/or underdamped. However, the problem of balancing on soft contacts has not received much attention in the literature. This paper presents two novel approaches to control a legged robot balancing on visco-elastic contacts, and compares them to other two state-of-the-art methods. Our simulation results show that performance heavily depends on the contact stiffness and the noises/uncertainties introduced in the simulation. Briefly, the two novel controllers performed best for soft/medium contacts, whereas “inverse-dynamics control under rigid-contact assumptions” was the best one for stiff contacts. Admittance control was instead the most robust, but suffered in terms of performance. These results shed light on this challenging problem, while pointing out interesting directions for future investigation.


Foods ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 316
Author(s):  
Marco Montemurro ◽  
Erica Pontonio ◽  
Rossana Coda ◽  
Carlo Giuseppe Rizzello

Due to the increasing demand for milk alternatives, related to both health and ethical needs, plant-based yogurt-like products have been widely explored in recent years. With the main goal to obtain snacks similar to the conventional yogurt in terms of textural and sensory properties and ability to host viable lactic acid bacteria for a long-time storage, several plant-derived ingredients (e.g., cereals, pseudocereals, legumes, and fruits) as well as technological solutions (e.g., enzymatic and thermal treatments) have been investigated. The central role of fermentation in yogurt-like production led to specific selections of lactic acid bacteria strains to be used as starters to guarantee optimal textural (e.g., through the synthesis of exo-polysaccharydes), nutritional (high protein digestibility and low content of anti-nutritional compounds), and functional (synthesis of bioactive compounds) features of the products. This review provides an overview of the novel insights on fermented yogurt-like products. The state-of-the-art on the use of unconventional ingredients, traditional and innovative biotechnological processes, and the effects of fermentation on the textural, nutritional, functional, and sensory features, and the shelf life are described. The supplementation of prebiotics and probiotics and the related health effects are also reviewed.


Author(s):  
Koen Andre Horstink ◽  
Lucas Henricus Vincentius van der Woude ◽  
Juha Markus Hijmans

AbstractPatients with diabetic peripheral neuropathy (DPN) usually have reduced somatosensory information and altered perception in feet and ankles. Somatosensory information acts as feedback for movement control and loss of somatosensation leads to altered plantar pressure patterns during gait and stance. Offloading devices are used to reduce peak plantar pressure and prevent diabetic foot ulcers. However, offloading devices can unfortunately have negative effects on static and dynamic balance. It is important to investigate these unwanted effects, since patient with DPN already are at high risk of falling and offloading devices could potentially increase this risk. The aim of this systematic review is to investigate the effects of plantar offloading devices used for ulcer prevention on their role in static and dynamic balance control in patients with DPN. PubMed and Embase were systematically searched using relevant search terms. After title selection, abstract selection, and full-text selection only five articles could be included for further analysis. Two articles included static balance measurements, two articles included dynamic balance measurements, and one article included both. Results suggested that static balance control is reduced when rocker bottom shoes and different insole configurations are used, however, toe-only rockers showed less evidence for reduced static balance control. There was no evidence for reduced dynamic balance control in combination with offloading devices. However, these results should be interpreted with care, since the number of studies was very small and the quality of the studies was moderate. Future research should evaluate balance in combination with different offloading devices, so that clinicians subscribing them are more aware of their potential unwanted consequences.


Sign in / Sign up

Export Citation Format

Share Document