scholarly journals Heat transfer and Entropy analysis of airflow around an airfoil subjected to an external magnetic field

2020 ◽  
Author(s):  
Hamed Saffarzadeh ◽  
M.H Djavareshkian

Abstract In the present study, the thermal Lattice Boltzmann Technique is combined with the Ghost Fluid method to simulate the flow and heat transfer rate around a NACA 0015 airfoil in the presence of an external magnetic field source. It is tried to investigate the mutual effects of the Hartmann and Reynolds numbers as well as the magnetic field angle and the attack angle of the airfoil on the flow and heat transfer characteristics. Besides, the total entropy generation rate of the system was studied through its main components, i.e. entropy generation rate due to friction, heat transfer, and Magneto Hydrodynamics. Therefore, the tests were carried out for various Re and Ha numbers, plus different magnetic field angles and airfoil attack angles, and their influence on the active parameters which are Cd, Cl, and Nu, along with the entropy generation rate of the system,were recorded. The results revealed that with an increment of the Re number the Cd and Cl graphs drop, but the Nu value raises. Also, the total entropy generation rate of the system is at its maximum around\(\gamma =60\).

1996 ◽  
Vol 118 (2) ◽  
pp. 98-101 ◽  
Author(s):  
Adrian Bejan

It is shown that to maximize the power output of a power plant is equivalent to minimizing the total entropy generation rate associated with the power plant. This equivalence is illustrated by using two of the oldest and simplest models of power plants with heat transfer irreversibilities. To calculate the total entropy generation rate correctly, one must recognize that the optimization process (e.g., the variability of the heat input) requires “room to move,” i.e., an additional, usually overlooked, contribution to the total entropy generation rate.


2016 ◽  
Vol 32 (6) ◽  
pp. 759-766 ◽  
Author(s):  
M. Ş. Demir ◽  
S. Barış

AbstractA theoretical study is presented for the problem of orthogonal axisymmetric stagnation flow towards an infinite horizontal plate with a constant velocity in the presence of viscous dissipation and heat generation. The governing equations are reduced to a system of nonlinear ordinary differential equations by means of appropriate transformations for the velocity components and temperature. The similarity equations are solved numerically using the Matlab routine bvp4c. The results are compared with those known from the literature and an excellent agreement is found. The effects of involved parameters on thex-wise velocity component, temperature, skin friction, heat transfer and entropy generation rate are presented in graphical and tabular forms. It was found that the Eckert number Ec, the Prandtl number Pr and the heat generation parameter α play a significant role on the temperature, heat transfer and entropy generation rate.


2017 ◽  
Vol 21 (2) ◽  
pp. 841-848 ◽  
Author(s):  
Omar Melhem ◽  
Ahmet Sahin ◽  
Bekir Yilbas

In the present study, second law analysis is introduced for circular cylinder confined between parallel planes. An analytical approach is adopted to study the effects of block age, Reynolds and Prandtl numbers on the entropy generation due to the laminar flow and heat transfer. Four different fluids are considered in the present analysis for comparison purposes. Heat transfer for the cylinder at an isothermal boundary condition is incorporated. In general, the entropy generation rate decreases as the blockage ratio decreases. In addition, the entropy generation rate increases with increasing Reynolds and Prandtl numbers. At a fixed Reynolds number, the effect of block age becomes more notice able for higher Prandtl number fluid. Similarly, for the same fluid, the effect of block age becomes more no tice able as the Reynolds number increases.


2020 ◽  
Vol 194 ◽  
pp. 01032
Author(s):  
Shien Sun ◽  
Haihua Luo ◽  
Basher Hassan Al-Kbodi ◽  
Qiang Shen ◽  
Houlei Zhang

Molten salt tanks are used to store and release thermal energy. Large heat leakage through the molten salt tank foundation to the ground and high temperature of the foundation are detrimental to long-term operation safety. Here we evaluate the heat transfer and entropy generation characteristics of molten salt tank foundations with internal water cooling. Both laminar and turbulent flows reduce the heat leakage efficiently, while the power consumption for the laminar flow is negligible. The effects of the geometrical parameters are presented. Internal fins in the cooling channels decrease the heat leakage significantly. The total entropy generation rate with foundation cooling is higher than that without foundation cooling. The entropy generation rate in the solid domain is much larger than that in the fluid domain and the flow friction irreversibility is tiny. Larger insulation layer thickness decreases the heat leakage and the total entropy generation rate simultaneously. The local entropy generation rate map helps us identify where the most irreversibility is produced. The largest local entropy generation rate for the design with foundation cooling occurs near the solid-fluid interfaces and is much higher than that without foundation cooling.


2019 ◽  
Vol 97 (6) ◽  
pp. 678-691 ◽  
Author(s):  
Hang Xu ◽  
Ammarah Raees ◽  
Xiao-Hang Xu

In this paper, a fully-developed, immiscible nanofluid flow in a paralleled microchannel in the presence of a magnetic field is investigated. Buongiorno’s model is applied to describe the behaviors of the nanofluid flow. Different from most previous studies on microchannel flow, here the pressure term is considered as unknown, which makes the current model compatible with the commonly accepted channel flow models. The influences of various physical parameters on important physical quantities are given. The entropy generation analysis is performed. Variations of local and global entropy generations with the magnetic field parameter, the electric field, and the viscous dissipation parameter under various ratios of the thermophoresis parameter to the Brownian motion parameter are illustrated. The results indicate that the entropy generation rate strongly depends on the thermophoresis and the Brownian motion parameters. Their increase enhances the total irreversibility of entropy generation.


Entropy ◽  
2020 ◽  
Vol 22 (11) ◽  
pp. 1214 ◽  
Author(s):  
Kun Yang ◽  
Wei Huang ◽  
Xin Li ◽  
Jiabing Wang

The heat transfer and entropy generation in a tube filled with double-layer porous media are analytically investigated. The wall of the tube is subjected to a constant heat flux. The Darcy-Brinkman model is utilized to describe the fluid flow, and the local thermal non-equilibrium model is employed to establish the energy equations. The solutions of the temperature and velocity distributions are analytically derived and validated in limiting case. The analytical solutions of the local and total entropy generation, as well as the Nusselt number, are further derived to analyze the performance of heat transfer and irreversibility of the tube. The influences of the Darcy number, the Biot number, the dimensionless interfacial radius, and the thermal conductivity ratio, on flow and heat transfer are discussed. The results indicate, for the first time, that the Nusselt number for the tube filled with double-layer porous media can be larger than that for the tube filled with single layer porous medium, while the total entropy generation rate for the tube filled with double-layer porous media can be less than that for the tube filled with single layer porous medium. And the dimensionless interfacial radius corresponding to the maximum value of the Nusselt number is different from that corresponding to the minimum value of the total entropy generation rate.


2010 ◽  
Vol 132 (9) ◽  
Author(s):  
Mohammad Shanbghazani ◽  
Vahid Heidarpoor ◽  
Marc A. Rosen ◽  
Iraj Mirzaee

The entropy generation is investigated numerically in axisymmetric, steady-state, and incompressible laminar flow in a rotating single free disk. The finite-volume method is used for solving the momentum and energy equations needed for the determination of the entropy generation due to heat transfer and fluid friction. The numerical model is validated by comparing it to previously reported analytical and experimental data for momentum and energy. Results are presented in terms of velocity distribution, temperature, local entropy generation rate, Bejan number, and irreversibility ratio distribution for various rotational Reynolds number and physical cases, using dimensionless parameters. It is demonstrated that increasing rotational Reynolds number increases the local entropy generation rate and irreversibility rate, and that the irreversibility is mainly due to heat transfer while the irreversibility associated with fluid friction is minor.


Sign in / Sign up

Export Citation Format

Share Document