scholarly journals Frequency spectra of horizontal winds in the mesosphere and lower thermosphere region from multistatic specular meteor radar observations during the SIMONe 2018 campaign

Author(s):  
Harikrishnan Charuvil Asokan ◽  
Jorge L Chau ◽  
Raffaele Marino ◽  
Juha Vierinen ◽  
Fabio Vargas ◽  
...  

Abstract In recent years, multistatic specular meteor radars (SMRs) have been introduced to study the Mesosphere and Lower Thermosphere (MLT) dynamics with increasing spatial and temporal resolution. In this paper, frequency spectra of MLT horizontal winds are explored through observations from a campaign using the SIMONe (Spread-spectrum Interferometric Multistatic meteor radar Observing Network) approach conducted in northern Germany in 2018 (hereafter SIMONe 2018). The seven-day SIMONe 2018 comprised of fourteen multistatic SMR links and allows to build a substantial database of specular meteor trail events, collecting more than one hundred thousand detections per day within a geographic area of $\sim $ 500 km $\times$ 500 km. We have implemented two methods to obtain the frequency spectra of the horizontal wind components: (1) Mean Wind Estimation (MWE) and (2) Wind field Correlation Function Inversion (WCFI), which utilizes the mean and the covariances of the line of sight velocities, respectively. Monte Carlo simulations of a gravity wave spectral model were implemented to validate and compare both methods. The simulation analyses suggest that the WCFI helps to capture the energy of smaller-scale wind fluctuations than those capture with MWE. Characterization of the spectral slope of the horizontal wind at different MLT altitudes has been conducted on the SIMONe 2018, and it provides evidence that gravity waves with periods smaller than seven hours and greater than two hours dominate with horizontal structures significantly larger than 500 km. These waves might be associated with secondary gravity waves during this observational campaign. In the future, these analyses can be extended to understand the significance of small-scale fluctuations in the MLT, which were not possible with conventional MWE methods.

2020 ◽  
Author(s):  
Harikrishnan Charuvil Asokan ◽  
Jorge L. Chau ◽  
Raffaele Marino ◽  
Juha Vierinen ◽  
Fabio Vargas ◽  
...  

Abstract. In recent years, multistatic specular meteor radars (SMRs) have been introduced to study the Mesosphere and Lower Thermosphere (MLT) dynamics. In this paper, the statistics of mesoscale MLT power spectra are explored through observations from a campaign using the SIMONe (Spread-spectrum Interferometric Multistatic meteor radar Observing Network) approach conducted in northern Germany in 2018 (hereafter SIMONe 2018). The seven-day SIMONe 2018 comprised of fourteen multistatic SMR links and allows to build a substantial database of specular meteor trail events, collecting more than one hundred thousand detections per day within a geographic area of ~ 500 km x 500 km. The two methods we propose to obtain the power spectra in frequency range are (1) Wind field Correlation Function Inversion (WCFI), which utilizes two-point correlations of specular meteor observations, and (2) Mean Wind Estimation (MWE), which determines the MLT winds and gradients from specular meteor observations. Monte Carlo simulations of a gravity wave spectral model were implemented to validate and compare both methods. The simulation analyses suggest that the WCFI is the viable option among them to study the second-order statistics of the MLT winds that helps to capture the energy of small-scale wind fluctuations. Characterization of the spectral slope at different MLT altitudes has been conducted on the SIMONe 2018, and it provides evidence that gravity waves with periods smaller than seven hours and greater than two hours are dominated by waves with horizontal wavelength significantly larger than 500 km, which might be associated to secondary gravity waves. We believe that the presented methods can help us bridge the observational gap between large and small-scale mesospheric wind fluctuations and also improve the capabilities of SMRs.


2020 ◽  
Author(s):  
Fabio Vargas ◽  
Jorge L. Chau ◽  
Harikrishnan Charuvil Asokan ◽  
Michael Gerding

Abstract. We describe in this study the analysis of small and large horizontal scale gravity waves from datasets composed of images from multiple mesospheric nightglow emissions as well as multistatic specular meteor radar (MSMR) winds collected in early November 2018, during the SIMONe–2018 campaign. These ground-based measurements are supported by temperature and neutral density profiles from TIMED/SABER satellite in orbits near Kühlungsborn, northern Germany (54.1° N, 11.8° E). The scientific goals here include the characterization of gravity waves and their interaction with the mean flow in the mesosphere and lower thermosphere and their relationship to dynamical conditions in the lower and upper atmosphere. We obtain intrinsic parameters of small and large horizontal scale gravity waves and characterize their impact in the mesosphere region via momentum flux and flux divergence estimations. We have verified that a small percent of the detected wave events are responsible for most of the momentum flux measured during the campaign from oscillations seen in the airglow brightness and MSMR winds. From the analysis of small-scale gravity waves in airglow images, we have found wave momentum fluxes ranging from 0.38 to 24.74 m2/s2 (0.88 ± 0.73 m2/s2 on average), with a total of 586.96 m2/s2 (sum over all 362 detected waves). However, small horizontal scale waves with flux > 3 m2/s2 (11 % of the events) transport 50 % of the total measured flux. Likewise, wave events having flux > 10 m2/s2 (2 % of the events) transport 20 % of the total flux. The examination of two large-scale waves seen simultaneously in airglow keograms and MSMR winds revealed relative amplitudes > 35 %, which translates into momentum fluxes of 21.2–29.6 m/s. In terms of gravity wave–mean flow interactions, these high momentum flux waves could cause decelerations of 22–41 m/s/day (small-scale waves) and 38–43 m/s/day (large-scale waves) if breaking or dissipating within short distances in the mesosphere and lower thermosphere region. The dominant large-scale waves might be the result of secondary gravity excited from imbalanced flow in the stratosphere caused by primary wave breaking.


2021 ◽  
Vol 21 (17) ◽  
pp. 13631-13654
Author(s):  
Fabio Vargas ◽  
Jorge L. Chau ◽  
Harikrishnan Charuvil Asokan ◽  
Michael Gerding

Abstract. We describe in this study the analysis of small and large horizontal-scale gravity waves from datasets composed of images from multiple mesospheric airglow emissions as well as multistatic specular meteor radar (MSMR) winds collected in early November 2018, during the SIMONe–2018 (Spread-spectrum Interferometric Multi-static meteor radar Observing Network) campaign. These ground-based measurements are supported by temperature and neutral density profiles from TIMED/SABER (Thermosphere, Ionosphere, Mesosphere Energetics and Dynamics/Sounding of the Atmosphere using Broadband Emission Radiometry) satellite in orbits near Kühlungsborn, northern Germany (54.1∘ N, 11.8∘ E). The scientific goals here include the characterization of gravity waves and their interaction with the mean flow in the mesosphere and lower thermosphere and their relationship to dynamical conditions in the lower and upper atmosphere. We have obtained intrinsic parameters of small- and large-scale gravity waves and characterized their impact in the mesosphere via momentum flux (FM) and momentum flux divergence (FD) estimations. We have verified that a small percentage of the detected wave events is responsible for most of FM measured during the campaign from oscillations seen in the airglow brightness and MSMR winds taken over 45 h during four nights of clear-sky observations. From the analysis of small-scale gravity waves (λh < 725 km) seen in airglow images, we have found FM ranging from 0.04–24.74 m2 s−2 (1.62 ± 2.70 m2 s−2 on average). However, small-scale waves with FM > 3 m2 s−2 (11 % of the events) transport 50 % of the total measured FM. Likewise, wave events of FM > 10 m2 s−2 (2 % of the events) transport 20 % of the total. The examination of large-scale waves (λh > 725 km) seen simultaneously in airglow keograms and MSMR winds revealed amplitudes > 35 %, which translates into FM = 21.2–29.6 m2 s−2. In terms of gravity-wave–mean-flow interactions, these large FM waves could cause decelerations of FD = 22–41 m s−1 d−1 (small-scale waves) and FD = 38–43 m s−1 d−1 (large-scale waves) if breaking or dissipating within short distances in the mesosphere and lower thermosphere region.


2008 ◽  
Vol 8 (3) ◽  
pp. 749-755 ◽  
Author(s):  
D. J. Sandford ◽  
M. J. Schwartz ◽  
N. J. Mitchell

Abstract. Recent observations of the polar mesosphere have revealed that waves with periods near two days reach significant amplitudes in both summer and winter. This is in striking contrast to mid-latitude observations where two-day waves maximise in summer only. Here, we use data from a meteor radar at Esrange (68° N, 21° E) in the Arctic and data from the MLS instrument aboard the EOS Aura satellite to investigate the wintertime polar two-day wave in the stratosphere, mesosphere and lower thermosphere. The radar data reveal that mesospheric two-day wave activity measured by horizontal-wind variance has a semi-annual cycle with maxima in winter and summer and equinoctial minima. The MLS data reveal that the summertime wave in the mesosphere is dominated by a westward-travelling zonal wavenumber three wave with significant westward wavenumber four present. It reaches largest amplitudes at mid-latitudes in the southern hemisphere. In the winter polar mesosphere, however, the wave appears to be an eastward-travelling zonal wavenumber two, which is not seen during the summer. At the latitude of Esrange, the eastward-two wave reaches maximum amplitudes near the stratopause and appears related to similar waves previously observed in the polar stratosphere. We conclude that the wintertime polar two-day wave is the mesospheric manifestation of an eastward-propagating, zonal-wavenumber-two wave originating in the stratosphere, maximising at the stratopause and likely to be generated by instabilities in the polar night jet.


2009 ◽  
Vol 27 (6) ◽  
pp. 2361-2369 ◽  
Author(s):  
F. Vargas ◽  
D. Gobbi ◽  
H. Takahashi ◽  
L. M. Lima

Abstract. We show in this report the momentum flux content input in the mesosphere due to relatively fast and small scale gravity waves (GWs) observed through OH airglow images. The acquisition of OH NIR images was carried out in Brazil at Brasilia (14.8° S, 47.6° W) and Cariri (7.4° S, 36.5° W) from September 2005 to November 2005 during the SpreadFEx Campaign. Horizontal wind information from meteor radar was available in Cariri only. Our findings showed strong wave activity in both sites, mainly in Cariri. High wave directionality was also observed in both sites during SpreadFEx, which have been observed by other investigators using different analysis' techniques and different types of data during the campaign. We discuss also the possibility of plasma bubble seeding by gravity waves presenting spatial and temporal scales estimated with our novel analysis technique during the SpreadFEx campaign.


2007 ◽  
Vol 7 (5) ◽  
pp. 14747-14765
Author(s):  
D. J. Sandford ◽  
M. J. Schwartz ◽  
N. J. Mitchell

Abstract. Recent observations of the polar mesosphere have revealed that waves with periods near two days reach significant amplitudes in both summer and winter. This is in striking contrast to mid-latitude observations where two-day waves maximise in summer only. Here, we use data from a meteor radar at Esrange (68° N, 21° E) in the Arctic and data from the MLS instrument aboard the EOS Aura satellite to investigate the wintertime polar two-day wave in the stratosphere, mesosphere and lower thermosphere. The radar data reveal that mesospheric two-day wave activity measured by horizontal-wind variance has a semi-annual cycle with maxima in winter and summer and equinoctial minima. The MLS data reveal that the summertime wave in the mesosphere is dominated by a westward-travelling zonal wavenumber three wave with significant westward wavenumber four present. It reaches largest amplitudes at mid-latitudes in the southern hemisphere. In the winter polar mesosphere, however, the wave appears to be an eastward-travelling zonal wavenumber two, which is not seen during the summer. At the latitude of Esrange, the eastward-two wave reaches maximum amplitudes near the stratopause and appears related to similar waves previously observed in the polar stratosphere. We conclude that the wintertime polar two-day wave is the mesospheric manifestation of an eastward-propagating, zonal-wavenumber-two wave originating in the stratosphere, maximising at the stratopause and likely to be generated by instabilities in the polar night jet.


2018 ◽  
Vol 36 (3) ◽  
pp. 899-914 ◽  
Author(s):  
Patrick Essien ◽  
Igo Paulino ◽  
Cristiano Max Wrasse ◽  
Jose Andre V. Campos ◽  
Ana Roberta Paulino ◽  
...  

Abstract. The present work reports seasonal characteristics of small- and medium-scale gravity waves in the mesosphere and lower thermosphere (MLT) region. All-sky images of the hydroxyl (NIR-OH) airglow emission layer over São João do Cariri (7.4∘ S, 36.5∘ W; hereafter Cariri) were obtained from September 2000 to December 2010, during a total of 1496 nights. For investigation of the characteristics of small-scale gravity waves (SSGWs) and medium-scale gravity waves (MSGWs), we employed the Fourier two-dimensional (2-D) spectrum and keogram fast Fourier transform (FFT) techniques, respectively. From the 11 years of data, we could observe 2343 SSGW and 537 MSGW events. The horizontal wavelengths of the SSGWs were concentrated between 10 and 35 km, while those of the MSGWs ranged from 50 to 200 km. The observed periods for SSGWs were concentrated around 5 to 20 min, whereas the MSGWs ranged from 20 to 60 min. The observed horizontal phase speeds of SSGWs were distributed around 10 to 60 m s−1, and the corresponding MSGWs were around 20 to 120 m s−1. In summer, autumn, and winter both SSGWs and MSGWs propagated preferentially northeastward and southeastward, while in spring the waves propagated in all directions. The critical level theory of atmospheric gravity waves (AGWs) was applied to study the effects of wind filtering on SSGW and MSGW propagation directions. The SSGWs were more susceptible to wind filtering effects than MSGWs. The average of daily mean outgoing longwave radiation (OLR) was also used to investigate the possible wave source region in the troposphere. The results showed that in summer and autumn, deep convective regions were the possible source mechanism of the AGWs. However, in spring and winter the deep convective regions did not play an important role in the waves observed at Cariri, because they were too far away from the observatory. Therefore, we concluded that the horizontal propagation directions of SSGWs and MSGWs show clear seasonal variations based on the influence of the wind filtering process and wave source location. Keywords. Atmospheric composition and structure (airglow and aurora) – electromagnetics (wave propagation) – history of geophysics (atmospheric sciences)


2006 ◽  
Vol 24 (4) ◽  
pp. 1199-1208 ◽  
Author(s):  
B. P. Williams ◽  
D. C. Fritts ◽  
C. Y. She ◽  
R. A. Goldberg

Abstract. The winter MaCWAVE (Mountain and convective waves ascending vertically) rocket campaign took place in January 2003 at Esrange, Sweden and the ALOMAR observatory in Andenes, Norway. The campaign combined balloon, lidar, radar, and rocket measurements to produce full temperature and wind profiles from the ground to 105 km. This paper will investigate gravity wave propagation in the mesosphere and lower thermosphere using data from the Weber sodium lidar on 28–29 January 2003. A very large semidiurnal tide was present in the zonal wind above 80 km that grew to a 90 m/s amplitude at 100 km. The superposition of smaller-scale gravity waves and the tide caused small regions of possible convective or shear instabilities to form along the downward progressing phase fronts of the tide. The gravity waves had periods ranging from the Nyquist period of 30 min up to 4 h, vertical wavelengths ranging from 7 km to more than 20 km, and the frequency spectra had the expected –5/3 slope. The dominant gravity waves had long vertical wavelengths and experienced rapid downward phase progression. The gravity wave variance grew exponentially with height up from 86 to 94 km, consistent with the measured scale height, suggesting that the waves were not dissipated strongly by the tidal gradients and resulting unstable regions in this altitude range.


Sign in / Sign up

Export Citation Format

Share Document